


(f-F45el

e

AN ANALYSIS OF THERMALLY INDUCED FLOW
OSCILLATIONS IN THE NEAR-CRITICAL AND SUPER-CRITICAL
THERMODYNAMIC REGION

by

Novak Zuber

May 25, 1966

Research and Development Center
General Electric Company
Schenectady, New York, 12305

Prepared for: Marshall Space Flight Center
NASA
Huntsville, Alabama 35812
Attn,: PR-EC
Contract No. 8-11422

Sponsored by: Missile and Space Division
Valley Forge Space Technology Center
General Electric Company
. Philadclphia, Pennsylvania




Abstract

Three mechanisms which can induce thermo-hydraulic oscillations at
near-critical and at super-critical pressures are distinguished and dis-
cussed.

Experiments show that low frequency flow oscillations are most pre-
valent in systems of practical interest., A quantitative formulation and
analysis is therefore presented concerned with predicting the onset of
these "chugging" oscillations as function of fluid properties, system
geometry and operating conditions.

The problem is analyzed by perturbing the inlet flow, linearizing
the set of governing equations and integrating them along the heated duct
to obtain the characteristic equation. The latter is given by a third
order exponential polynomial with two time delays.

Conditions leading to aperiodic as well as to periodic flow
phenonema are investigated. The first pertains to the possibility of

flow excursion'the latter to the onset of flow os.illation.

Stability maps and stability criteria are presented which, previously,
were not available in the literature. They can be used to determine:
a) The region of stable asd_unstable operation and
b) The effects which various parameters have on either promoting
or preventing the appearance of flow oscillations.
The effects of various parameters are analyzed and improvements are
suggested whereby the onset of flow oscillation can be eliminated.
The similarity between ''chugging'" combustion instabilities and
thermally induced flow oscillations at near- and super-critical pressures
is pointed out.

A review of the present understanding of the near-critical thermo-

dynamic region is also presented.
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1. Research Objectives

This 1esearch was conducted to determine the fundamental nature of

oscillation; and of instabilities in the flow of cryogenic fluids with heat

addition.

The investigation was motivated by the fact that severe oscillations

have bteen experienced in rocket engines heat exchangers utilizing oxygen

and hydroger at both subcritical and supercritical pressures.

The particular objectives of this investigation were:

1.

To distinguish a number of mechanisms which may be respon- -
sible for thermally induced flow oscillations at near cri-

tical and at supercritical pressures.

To present a quantitative formulation of the mechanisms
which appear to be most significant from the point of sys-

tem design and operation.

To predict the onset of these oscillations in terms of the

enis

geometry and of the operating condition of the system.

To analyze the consequences of the theoretical predictions

and to suggest improvements whereby the onset of these

oscillations can be eliminated,




2. Summary and Conclusions

1. Mechanisms Leading to Unstable Operation

Three mechanisms which can induce thermo-hydraulic oscillarions at near
critical and at supercritical pressures have been distinguished,

Orne is caused by the variation of the heat transfer coefficient at the
transposed i.e.,, at the pseudo-critical point.

The second is caused by the effects of large compressibil:i:y in the
critical thermodynamics region.

Finally, the third mechanism is caused by variations of flow character-
1stics brought about by variations of fluid density during the heating pro-
cess., The propagations of these variations through the system introduce
various time delays which, under certain conditions, caa cause unstable flow.

This last mechanism, which induces low frequency oscillations, was
investigated in detail because available experimental data show that this

type of flow cscillations is most prevalent in systems of practical interest.

2. Formulation of the Problem

The problem was formulated in terms of an equation of state and of
three {ield equations describing the conservation of mass, energy and mo-
mentum,

The subcritical pressure range of operation was differentiated from the
supercritical one by using the appropriate equation of state.

The problem was analyzed by perturbing the inlet flow, linearizing the

set of governing equations and integrating them along the heated duct to

obtain the characteristic equation.




3. The Characteristic Equation

The characteristic equation is given by a third order exponential poly-
nomial with two time constants, (sze Eq. V-15). It is expressed in terms of

fluid properties, of system geometry and of operating conditions by means of
influcence coefficients (see Eq. V-16 through £q. V-22).

The influence coefficicents cxpress the effects of the inlet flow

perturbation and of the space lag pert rbaticn on the various pressure drops

of the system. By introducing vdrious definitions for the average, for the
log.mean and for the mean densities and velocities it is shown that each
pressure drop is weighed with respect to a different velocity. This
result, which follows, from the integraticn of the governing set of
cquations, i.e., from thi oistcibuied parameter analysis, could not have
been ottained from an analysis, based on ''lumped" p-rameters. Consequently
the accuracy of an analysis based on this latter uppi.ach can be estimated
by means of the resalrs obtained in this investiga.-c

The characteri-'ic equation was used to obtain ¢:+bility maps and
stability criteria which, previously, were not aw. . =:le in the literature.
The stability maps and criteria can be used :~» ¢ ..mine

a. The region of stable .nd of unsiab! rneration and

b. The effects which various parameter: may have on either promoting

or on preventing the appearancz of flow nscillations.
Conditions leading to aperiodic as well as to periodic flow phenomena

were investigated. The first pertain to the possibility of flow excursion

whereas the second pertain to the onset of flow oscillation. For this latter

case the flow stability in systems with low inlet subcoédling was considered

separately from that correspondiig to systems with high inlet subcooling.
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The stability problem at intermediate subcooling will be considered in a

future report-

4. Excursive Flow Instability

It was shown that, at supercritical pre-sui:z.. a flow system with heat
addition can undergo flow excursions because ti-. -3d.aulic characteristics
¢ the cystem are given by a 1bic relation betweer the pressure and the
mass flow rate (see Eq- VI-20). The latter .s a consequence oi density
variations in the system.

This excursive flow instability, at supercriiical pressures, i the
equivalent of che "ledinegg' cxcursive ‘nstability in builing systems zt
subcritical pressures. This equivalence is supported by experimental data
(see Figur VI-1) which show that in both pressure regizns, the flow system
has sumilar hydraulic characteristics.

A stability criterion which predicts the onset of the excursive in-
stab*lity was derived in terms of system geometry, of fluid properties and
of cperating conditicns, i.c., of system pressure, flow rate, inlet temp-
erature and power inpui (see Eq. VI-13). Various aspects of this type of
instability are discussed together with provisions requir:d to prevent its

appearance (see Section VI-2).

5. Flow Oscillations at Low Inlet Subcooling

Tt was shown that for a system with low inlet suvcooling the character-
istic equation can be reduced to a second order polynomial with one time
delay (see Eq. VII-7). For such a system the propeusity to flow oscillation

can be analyzed by means of the stability maps recently presented by Bhatt

and Hsu (see Figure VII-1).




It was shown further that, when the ineriia can be neglected in a system
with low inlet subcooling then the characteristic equation reduces to a first
order exponen:ial polynomial with one time delay (see Eq. VII-16}.

For such a system the flow will be unconditionally stable if the

stability number Ng (defined by Eq. VII-3%) is larger than unity. If
Ng is smaller than unity, stable operation is still possible if the angular
frequency of the inlet perturbation is larger than the critical one (given
in Eq. VII-40) or if the transit time is shorter than the critical one
(given by Eq. VI1-41).

The region of stable and of unstable operation are shown in a stability
map (see figure VII-2) which can be used to analyze the effects that various
parameters have on the propensity to induce or to prevent flow oscillations
(see Section VII.3).

Although the analy:ical predictions have not vet been tested quantita-
tively, the trends predicted by this map and by the stability criierion
(see Eq. VII-22 or Eq. VII-29) are in qualitative agreement with experimental

observations (see Section VII.3).

6. Flow Oscillation at High Inlet Subcooling

It was chown that when the effects of the two time drlays can be
neglected then the characterisiic equation reduced to a third order polynomial
(see Eq. VIII-2). A stability criterion was also derived (see Eq. VIII-15)
which specifies the conditions for siable operation.
with provisions required to prevent their appearance (see Section VIII-2).

It is shown that.the flow is more stable at high subcoolings than at low.

Furthermore, it is concluded that the destabilizing effect of subcooling

T e
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Various aspects of this type of oscillations were discussed together [




must gc triough a maximum at intermediate range, (see Section VIII-2}.

7. Significance of the Results

The results of this aralysis indicate several improvements in the design
and/or in the operating conditions which can be made to prevent the onset of
flow excursions or of flow oscillations. These are discussed in more detail
in relation to each type of inscability (see Sectiomns VI-2, VII-3, and
ViIIi-2).

It was shown that the predominance of a particular parameter results

in a particular wave form and in particular frequency {(see Eq. VII-40 and

Eq. VIII-17). This result indicates that the primary cause of the instability

can be determined from the trace of flow oscillations.

Perbhaps the result of greatest significance revealed in the present
investigation is the similarity between the characteristic equatior which
predicts "chugging'" combustion instabilities and the characteristic equation
which predicts the thermally induced flow oscillations for fluids in the
near critical and in the supercritical thermodynamic region. Since it is
well known that "chugging' combustion instabilities can be stabilized by an
appropriate servo-control mechanism, the results of this investigation
indicate that low frequency flow oscillations, at near critical and at
supercritical pressures may be also stabilized.

The preceding conclusiong have not yet been tested against experimental

L J
data. If confirmed, then the results of this study will provide a method

whereby stable orcvation can be insured in an intringically unstable region.
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3. Recommendations

The recommendations listed in the four tasks below, “efine the effort

nceded to complete and to verify the results obtained in this investigation.

1. Verify the stability criteria based on the second and first order
exponential polynomials which have been derived in the course of
these investigations. For this purpose use available experimental

data for various fluids at subcritical and at supercritical pres-

sures,

2. From the characteristic equation given by the third order exponential
polynomial with two time delays (Eq. V-15) derive stability maps and -
stability criteria applicable to the entire range of subcoolings. e

Test these results against available experimental data.

3. Modify the characteriscic equation to take intc account che effects
of the entire flow system i.e., of the flow loop. In particular in-
clude the effects of the inertia of the liquid in the storage tank and

:
i
3
in the supply lines together with the flow and elastic characteristics 2
of these lines. é

4, Based on the results obtained from the preceding three tasks specify a
servo-control mechanism which could be used to stabilize the flow for

a system of practical iaterest and verify the results by experiments.
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4. Nomenclature
MLT® System of Units

with H defined by 4 = ML2 T"2

' A, = cross sectional area of the duct LLZ‘}
A = coefficient defined by Eq. VII-16
a = coefficient defined by Eq. VII-10
a* = coefficient defined by Eq. VI-21
¢t = coefficient defined by Eq. VII-17
B* = coefficient defined by Eq. VI-4
b = coefficieat defined by Eq. VII-1l
b* = coefficient defined by Eq. VI-23 -
¢ = ccefficient defined by Eq. VII-12 N
c¢* = coeificient defired by Eq. VI-23
cp = specific heat of the fluid in the "light" fluid region [ HM‘19'1.]

D = diameter of the duct[ L-)

f = friction factor

F1 = 1Influence coefficient defined by Eq. V-5
F) = " Fq. V-6

Fy = " Eq. V-7

F, = " Eq. V-8

Fg = " Eq. V-9

Fp = " Eq. V-10
F7 = " Eq. V-11

@
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I = 1Integrals given by Eq. IV-94, IV-97, 1v-101, IV-107, 1V-111,

i = Enthalpy (HM'l‘]
Aifg = Latent heat of vaporization [HM"I-]
Aiy; = Inlet subcooling [mal )
. ki = coefficient of the inlet flow restriction -
ke = coefficient of the exit flow restriction -
L = Total length of the heated duct [L—)
Mg = Mass in the '"heavy'" fluid region

per unit area ( M2 )
Mg = Mass in the "light" fluid region

per unit area [ML‘2 ]

. Ng = Stability number defined by Eq. VII-39
P = system pressure [M,'IT'Z]
A Pex = Pressure rise of the external system [ML"IT'Z.]
A Po1 = Steady state pressure drop (SSFD) across inlet

orifice defined by Eq. III-28 [pm'lr-2-]

AP12 = SSPD due to friction in the heavy "fluid" region, defined
by Eq. III-31 [Mm‘lT‘Z-W :

A P, = §SPD due to gravity in the heavy "fluid" region,
defined by Eq. ITI-30 {m,-l'r‘z-l

AP, = SSPD due to acceleration in the "light" fluid region,

defined by Eq. IV-89 [Mm'lr'z']

A Pb? = SSPD due to gravity of the "light" fluid region,

defined by Eq. IV-102 tML'lT'2 7 ‘




A P23

A Py

SSPD due to frictien of the light fluid region,

defined by Eq. IV-112, [_ML'li-Zq

SSPD across exit flow restriction defined by Eq. IV-122. ( M)
heat flux density IHL'ZT'I_\

total heat input rate [HT"1 ]

gas constant Y 121291 7

Exponent of the inlet velocity perturbation { -1 7

Stability criterion defined by Eq VI-28

I'eriod of the inlet velocity perturbation

time

velocity [ LT'1]

steadvy state velocity in the "heavy" fluid region LT-1

S.S. velocity of tnhe light fluid region defined by Eq. IV-28.(L)
S.5. velocity at the xit from the duct

defined by Eq. IV-31. (L)
average velocity in the "light" fluid region

defined by Eq. IV-32. (L)
Log mean velocity of the " “ight" fluid region

defined by Eq. IV-36 (L)
mean velocity of the "light" fluid region

defined by Eq. IV-38. (L)

inlet velocity perturbation given by Eq. III-7. L
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¢
C)Ug velecity perturbaticn cf the "light" fluid region

giver, by Eq. TV-30.

v = specific volume of the heavy fluid {_L3M'] )
, Vg = specific vclume of the "light" fluid [713M”1-]
A Vep = charge cf specific velume in vajorizaticn {-L3M“1}
W = total steady state mass flow rate (MI--1)

2 . length LL.—\

Green letters

3

]

heated perimeter Y>I,—l

A = space lag defined by Eq. IT7-20 [ L )
’ SA = perturbation of the space lag Ty
defined by Eq. III-23.

€ = amplitude cf inlet velocity perturbation {-LT'l T
T, = time lag, defined by Eq. III-18 [ T)
r3-T; =47T = tctal transit time, defined by Eq. I1I-63 [ T \

T, = critical transit time, defined by Eq. ViI-4l.
o) = characteristic reaction frequency, defined by Eq. IV-21.

?i = density of the "eavy" fluid [ML'3-}

' = density of the light fluid £ML'3 1

?3 = densitv at the exit from the heated duct, defined by Eq. IV-72.
?lﬁn = 1log mean density in the light fluid regicn, defined by Eq. IV-76.

average denzity in the light fluid region defined by Eq. IV-73.

€

Qah = mean density in the "light" fluid region defined by Eq. IV-77.




“w = angular frequency of the inlet velocity perturbation T-1 L

Ny
Z
]

(4) critical angular frequency defined by Eq. VII-4O0.

o

dimensionless exponent defined by Eq. VII-8.

Subscripts

0, 1, 2, 3, 4 correspond to the locations of the duct

indicated on Fig. II-2.
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1.1 The Probiem and Its Significance

A fiuid in the vicinitv of the critical pciat 1s an efficient heat
transfer medium because of the large specific heat and of the large co-
ctficient of thermal expansion. Consequentiy, the demand for increased
efficiency ot several advanced systerms gemnerated an interest in emoloying
fluids at critical and supercritical pressures either as cocliing or working
media. For example. nuclea:-rﬁtké{é, power reactors, high pressure once-
through boilers, regenerative heat exchangers for rocket gngines—and a-new
sea water desalinization process are designed to cperate in the critical
and the supercritical thermodynamic regicn. These developments made it
necessarv to obtain data on and to improve the understanding of the thermal
and the flow behavior over a broad range cf fluid states.

A great rumber of investigatiorns conducted for such a purpose have
revealed that, in the critical as well as in the supercritical thermo-
dynamic region, flow and pressure oscillacicns may occur when certain
cperating conditions are reached. These oscillations were observed in
systems with forced flow as well as with natural circulationm.

The occurrence of sustained pressure and flow -scillations and the
attendant temperature oscillations are very undesirable and detrimental to
reliable operation of a system. Mechanical vibrations and thermal fatigue
induced by these cscillations very often result in a rupture of the duct.
In liquid propellant rocket ¢ngines flow and pressure oscillations can also

induce combustion instabilities resulting in a breakdown of the system.

-1-
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Furthermore. in nuclear reactor systems flow and pressure oscirllations may
induce divergent power oscillations leading to the destiuctior of ‘he
entire system. Consequently, there is considerable practical interest and
incentive to investigate, quantitatively, the cunditions leading to the

inception of these oscillations.

1.2 Previous Work

Scvere pressure and fiow cscillations were observed in experiments
performea with various fluid in the supercritical chermodynamic region.
Such oscillations were reported by Schmidt, Ecker® and Grigull [1ik, (ammonia);
Goldman [2, 31 , (water); Firstenberg [4?[, (water); Harden (5~1, (Freon-114);
Harden and Boggs‘ié} , (Freon-114); Walker and Harden [7—;, (water, Freon-114,
Freon-12, carbon dioxide); Holman and Boggs [?l, (Freo- ~12) Hines and
Wolf [9-\(RP-1 and diethycyclohexane); Platt and Wood [ZOX (oxygen);
Ellenbrook, Livingood and Straight [11\, (hydrogen); Thurston [&2\, {hydrogen,
nitrogen); Shitzman tﬁB, 14-X(water); Semenkover [15‘k(water); Cornelius and
Parke: ﬁlé& (Freon-114); Cornelius(:1;\ (Freon-114); and Krasiakova and
Glusker [18] (water).

For a given 1luid the characteristics (frequency ani amplitude) of
these oscillations varied with uperating conditions. In general, two types
of oscillations were observed: acoustical and chugging oscillations. For
example, Shitzman [15\ reports that, for water at 250 atm, the pressure and
temperature oscillations had a period of 80 sec. and an awplitude of 25 atm.,
and of 100°C respectively. Decreasing the flow rate and the power density
resulted in decreasing the period to 15 sec. However, at a pressure Of

5000 psi, Goldman [2, 3-]r<ports pressure ogcillations with frequencies

from 1400 to 2200 cps. Similar high frequency oscillations (1000-10,000 cps

-




aad 380 psi peak to peak) were reported by Hines and Wolf [9F}for RP-1,

Three classes of pressure oscillations in the supercritical regicn
were cbserved in the experiments of Thurston [12]; these were described as:

1; Open-cpen pipe resonance observed at medium and high fiow rate.

This mode i3 associated withk the fundamental waveleagth of an
open-open pipe.

2) Helmholtz rescnance, associated with a resoratcr composed of a

cavity connected to an externa: atmcsphere via an orifice or neck.

37 Supercritical oscillations appearing uscally ar low fiow rates.

Hines and Wolf[.é}, however, report only two general types of oscilla-
tions: a high frequency (3000-75000 cps) oscillations audible as a clear
and steady scream and an oscilliation with a lower frequency (600-2400 cps)
which was audibie as a chugging cr pulsating noise. The dominagt frequencies
cf these oscillations did pot correspond to simple acoustic resonant fre-
quencies for the tubes.

Cornelius and Parker{l6, lf\ describe in detail the two types of
oscillations and note that the frequency of the acoustical oscillations
decrcases with temperature whereas the frequency of the chugging oscillations
increases with temperature. Occasionally, both types of ogcillations occured
simultaneously.

A quantitative formulation and explanation of the conditions leading
to the appearance of the pressure anda flow oscillations has not been reported
yet, although several qualitative explanations have been advanced. 1t is
generally agreed that the oscillations are caused by the large variations

of the thermcdynamic and the transport properties of the fluid as it passes

througn the critical thermodynamic region.
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Several investigators (12, 13 14) note that the appearance of oscil-
lations occurs wher. the temperature of the heating surface exceeds the

“pseudo critical' or the "transposed' critical temperatures, i.e., the tem-

perature where the specific heat reaches its maximum value (sce Figure Al in
Appendix A). Oscillations were not observed if the inlet temperaturc was
above this temperature. From this it was concluded that the mechanism for
driving the oscillation cccurred only when a "pseudo liquid" state was present

in some parts of the heated duct.

Firstenberg (4) attributes the oscillations to the variations of the heat
transfer rates to the fluid, whereas Goldman (2, 3) explains the oscillations
as well as the steady state heat transfer mechanism in the critical and super-
critical thermodynamic‘region as "boiling like'" phenomena associated with non-
equilibrium conditions, According to Goldman, below the pseudo-critical temper-
ature the fluid is essentially a liquid, above this temperature it behaves as a
gas. At the pseudocritical temperature, the density gradient and the specific
heat reach maximum values giving an indication of the eunergy required to over-
come the mutual attraction between the molecules. The fluid in the immediate
vicinity of the heated wall is in a gas-like state; whereas the bulk fluid may
still be in <he liquid-like state. If by means of turbulent fluctuations a
liquid-like cluster is brought into contact wiih the heating surface a large a-
mount cf energy will flow from the surface tc he cluster because of the large
temperature difference and because of the high conductivity of the liausd-like
fluid. This energy may be large enough to "explode'" clusters of molecules from

the liquid-like state to the gas-like state. Thus, according to Goldman (2, 3),

one may visualize the supercritical region as a region where explosions of liquid-

,..H.._._._,.,_......_._..w



like clusters ‘antc gas-iike aggregates tske place. Geoldmrar ccasiders this
prccess to be similar to the fcrmation of bubbles in i1iquids during beoiling
at subcritical pressures.
The conditions under which oscilliations occur were summarized by
CGoldman as follows:
1) Heat transfer with "whistle" (i.e.. with osciliaticns) eccurs
orly at high heat flux demsities and with bulk temperatures lower
than the pseudccritical temperature.

At a given fiow rate and i1nlel temperature, whistles occur at

N2
Nt

higher flux densities for higher pressure levels.
- 3) At given flow rate and pressure, whistles occur at lower heat
fiux densities for higher inlet temperatures.

4) At a given pressure and inlet temperature, whistles occur at

higher heat fiux densities for higher flow rates.

5) Whistles can be produced with various ilengths of the test section,

but the heat flux or inlet temperature must bte increased to bring
it about if the tube is shortened,

Visual observation that boiling-like phernomena can exist at supercritical
pressures was reported by Griffith and Saberski{}é]in ésperiments conducted with
R-1l4 ., The photographs of the process revealed a behavior similar to
that cbserved in pool boiling at subcritical pressures.

Similarly, high speed movies of hydrogern at supercritical pressures
taken by Graham, et al (ZO‘lrevealed a phenomenon resembling boiling. Clusters

of low density fluid were observed rising through a denser fluid-giving

boiling-like appearance.




Hines and Wolf [91 attribute the appearance of the flow oscillations
at supercritical pressures to the variations of liquid viscosity. They
note that a small change of temperature near the critical point results
in a large change of viscosity. Consequently, a sudden increase in wall
tem erature could cause a thinning of the laminar boundary layer due to
variation of the viscosity. Thinning of the boundary layer would result
in a drop of the wall temperature and a corresponding increase of viscosity.
his would cause a thicker boundary layer and produce another rise of tem-
perature, thus repeating the cycle. It was shown by Bussard and DeLauer [:Zi]
and by Harry[ 22] that a viscosity-dependent mechanism can induce an unstable
flow in single phase flow systems when the absolute gas temperature is in-
creased by a factor of 3.6 or more. Such flow oscillations were observed
by Guevara et al<;g3i]with helium flowing thiouzh a uniformly heated
channel.

Harden and co-workers[;s, 6, 71 concluded from their experiments that
sustained pressure and flow oscillations appeared when the bulk fluid reached
a temperature at which the product of the density and enthalpy has its maximum
value. This explanation was, however, criticized by Cornelius [171.

Cornelius and Parker [16, 171 postulate that both acoustical and the
chugging oscillations originate in the heated boundar:r layer. When the
tluid in the heated boundary layer is in a 'pseudo vapor'" state, a pressure
wave passing the heated surface would tend to compress the boundary layer,
improve the thermal conductivity and cause an increase of the heat transrer
coefficient. A rarefraction wave passing over the heated wall would have

just the opposite effect. Thus, this pressure--dependent--heat-transfer

rate could induce and maintain an acoustic oscillation. Cornelius and Parker
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attribute the appearance of chugging cscillations to "boiling-like" phenomena
ani a s.dden wmprovement of the heat tranzfer coefficient, An approximate
numerical sclution verified the importance of the heat transfer improvement
in triggering and maintaining oscillations,

Of particular interest to the analysis presented in this paper are the
experimental results of Semenkover, [15] and of Krasiakova and Gluskerl:l8]
fcr water at 250 atm, For a ccastant power input 6 to the system their data
show a pressure versus mass flow relation that is illustrated in Figure I-1.
it ran be seen that for large values of inlet enthalpy i, there is a monotonic
increase of pressure drop with fiow rate. At a certain lower value of i,
the curve shows an inflection point, For still lower values of inlet enthsalpy,
there is a regicn where the pressure drop decreases with increasing flow rate.
Such a pressure drop-flow rate relation cccurs in boiling systems and gives
rise to an excursive type of instability which was analyzed first by Ledinegg
L?q] and by numerous investigators since E25 - 47]. Consequently, the data
of [159 183 tend to confirm the similarity between instabilities.observed
during subcritical boiling and those observed at supercritical pressure

suggesting therefore a common mechanism,

I.3 Purpcse and Outline of the Analysis

From the preceeding brief review of the present understanding of flow
oscillations at supercritical pressures, it can be concluded that zeveral modes of
nscillation exist., It can be expected, therefore, that several mechanisms can
be effective ir inducing unstable flow. Indeed, as discussed in tiue preceeding
section, several qualitative explanations of the phenomencn have been already

advanced. !owever, a quantitative formilaction of the problem is still lacking.
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Ibe analysis presented in this paper has four cobjectives:

1} To distirguish a number of mechanisms which may be respconsible for
thermally induced flow oscillations at nearcritical and at supercritical
pressures.

2) TIo present a quantitative formulation of the mechanism which appears to
be most significant from the point of view of system design and operation.

3) To predict the onset of these oscillations in terms of the geometry and
of the operating conditions of the system.

4} I> aralyze the cornsequerces of the theoretical predictiocns and “o suggest

improvements whereby the cnset of these oscillations can be elimiraced.

The particular mechanism which is formulated and analyzed in this paper
is based on the effects of time lag and of density variations. It is well
krown that these effects can induce combustion instabilities in liquid pro-
pellant rocket motors as discussed by Crocco and Cheng 48‘\. It was shown
by Profos[éﬂ , Wallis and Heasiey [SO—X and by Bouré (51-3 that the effects
cf time lag and of density variations can also induce unstable flow in ‘
boiling mixtures at subcritical pressures. The suggested similarity of

flow oscillations observed at supercritical pressures with those obcerved in

two phase mixtures at subcritical pressurss prompts us to formulate and

to analyze the problem in terms of this mechanism. In particular, the ex-
perimental results of Semenkover [15} and of Krasiakove and Glusker lléx
discussed in the preceding section, together with the chugging uscillations
described by several authors provide enough evidence to warrant a more de-
taitled analysis of flow oscillationsat supercritical pressures in terms

of the time lag effect.

The present analysis is sim‘lar to those reported by Wallis and Heasley




inJ ard by Bouré [SLJ in two respects: the forwmulation and the assumpticns

7€ the same, In particular, it 1s assumed that the density of the medium .
15 a functicn of enthalpy only. The effects of pressure variations are,
tberefere rzglected.* As noted by Wallis and Heasley [50] ~his assumption
results in the decoupling of the momentum equation from the ¢nergy and the
ccatinuity equations. The momentum equation can be integrated then separately
afrer the velocity and density variations are obtained from the continmuity and
the erergy equaticns. Following Bouré [51] the problem is formulated in terms
+{ an equaticn of srate and of three field equaticns describing the .cnser-
73t.cn of mass, epergy and mementum,

Apart from rthe facc that the analyses of Wallis and Heasley'[5Q] and
of Bouxéd [5%] were derived to predict unstable flow in boiling two prase
rixrures the present analyses (concerned witn flow oscillations at near-
critical and at supercritical pressures) differs from tneirs in two respects:
1) tne form of the constitutive equation of state is different, 2) the
characteristic equation describing the nset of oscillations is different.
From tnis characteristic equation, we shall derive stapility maps and
stability inertia which, previously,were not available in tne literature.

Tne cutline of the paper is as follows. In Chapter 11 some general
cocmments are made regarding 1) tne nature of the thermally induced flow
oscillations at nearcritical and at supercritical pressures, 2) tne effect
of tne time lag, 3) tne implication and limitations of tne assumptions and
4) tre gereral metnod of solut’on. In Cnapters III and IV tne problem is
formulated and tne sev of governing equation is solved. Tne cnaracteristic
equation wnicn predicts tine onset of flow oscillacion 15 derived in Chapter V;
1t 18 ¢f une torm of a third crder exponential polynomial with two time :

delays. From the characteristic equation a criterion is derived in

*The limitations and implications of this assumption are discussed in Chapter 11,




Chapter VI which predicts the onset of an excursive type of instabil:ty at
supercritical pressures.* This excursive instability at supercritical
pressure is the equivalent of the so called Ledinegg excursive instability
for boiling at subcritical pressures. The effect of time lags in inducing
flow oscillations is analyzed in Chapters VII and VIII which consider first
and second order expotential polynomials. Stability diagrams which predict
the regions of stahle and unstable flow in terms of the operating parameters
are given in these two chapters together with suggested improvements whereby
the onset of oscillations can be eliminated. The recommendations for

future work and the conclusions are given ir Chapters IX,

The status cf the present understanding of thermodynamic phenomena that take

place in the criticel thermodynamic region is discussed in Appendix A.

1.4 The Significance of the Results

Three mechanisms which can induce thermo-hydraulic oscillations at
supercritical pressures have been distinguished in this paper. One is
caused hy the variaticn of the heat transfer coefficient at the transposed,
i.e., pseudo critical point. The se-ond is caused by the effects of large
compressibility and the resultant low velocity of sound in the critical
region. Finally, the third mechanism is caused by the large variation of flow
characteristics brought about by density variations of the fluid during the

4

heating process., The propagations of these variationg)in particular of the

Pal

enthalpy and’9£ the density, through the system introduce delays which,’

*This criterion was first derived by the writer in the Second Quarterly
Progress Report, "Investigation of the Nature of Cryogenic Fluid Fiow
Instabilities in Heat Exchangers,' Contract NAS8-11422, 1 February 1965.
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uader certain conditions, can cause unstahle flow. This last mechanism, that
1nduces low frequency oscillations, is investigated in detail because ex-

perimental data show that this type of oscillation is most prevalent,

It is shown that at supercritical pressure unsteady flow conditions
both excursive and oscillatory can occur. A characteristic equation is
derived that predicts the onset of flow instabilities caused by density
variations in the critical and supercritical thermodynamic region. The
same characteristic equaticn can be used to predict the .nset of flow
instsviiities in bciling at subcritical pressure, if the effect ol the
relative velocity between the two phases can be neglected. Experimental
evidence shows that this effect becomes negligible at reduced pressures
above say 0.85. Consequently, at ne ar critical and supercritical pressures,
the characteristic equation, which is expressed in terms of system geometry
and operétive conditions, can be used tc determine:

a) The region of stable and unstable behavior.

b) The effect which various parameters may have on either promoting

or on preventing the aprearance of flow oscillations.

From this characteristic equation simple '"rule of thumbs' criteria are
also derived based on the assumption that one or the other of the various
parameters is dominant. It is shown that the dominance of a particular
parameter results in a particular frequency and wave form. This results
permits a diagnosis of “he primary cause of the instability from the trace
of flow oscillations.

It is of particular interest to note that the characteristic equation
derived in this paper for predicting flow oscillations at supercritical

pressure is of the same form as a characteristic equation derived by Crocco

-11-




and Cheng[ZSJto predict combustion instabiliries of liquid prcpellart
rccket mctore,* I is well established in the combustion literatu:e that
a zerve-control mechanism can be vsed to stabilize the low frequercy com-
bustion instability, The similaricy of *the craracceristic ejusticns 1¢

, therefore, significant because ic indicates that stable operation could
be insured also in the nearcritical and in the supercritical regi:n by

using an appropriately designed gervo-control mechanism,

*This similarity between combustion and two phase flow instabilizies should
not come as a surprise if one recalls that the processes of combustion and
of boiling are both chemical processes involving large enthalpy and density
changes.
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II. General Considerations

IL.l The System and the Thermodynamic Process

In order to understand the mechanisms of the thermaliy induced flow
oscillations at supercritical pressures, 1t is necessary to examiue
triefly the system and the thermodynamic process.

The system of interest is shown in Figure IT-1. It consists of a
fiuid flowing through a heated duct of length 1. Wiclcut less of
generality it will be assumed that the dvci is uniformly heated at a
rate of &. Two flow -estrictions are loca:ed one at the enfirance, the
other at the exit of the duct.

The thermcdynamic process starts with the filuid at a supercritical
pressure P, entering the heated duct with velocity W, . The temperature
I,, of the fluid at the inlet is well below the critical temperature of che
fluid under considerations. As the energy is being transferred from tue
heated duct te the fluid its temperature T, specific volume v, and enthalpy

i, wiil increase. Thus, the temperature T at the exit may be considerably

30
above the critical temperature. In a number of systems of practical interest
it can be assumed that this process takes place at an approximately constant
pressure.

In order to formulate the problem it is necessary to specify the
ceastitutive equation of state which descripbes the relation petween say
tne specific volume, the pressure and the enthalpy for the particular
fluid. This requires data on the thermodynamic properties of the fluid in

the region of interest. The region of interest to this study are the

nearcritical and the supercritical regions.
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The present understanding of the thermodynamic properties and phenomena
at nearcritical and supercritical pressures 1is reviewed in Appendix A.
1t 1s shown there that at these pressures the fluid has the characteristics
of a liquid when the temperature is sufficiently below the crirical ome.
However. if the temperature is increased sufficiently above the critical
terperature, the fiuid will have the characteristics of a gas. This is
illustrated in Figure II-2 which 1s a plot ot the specific volume and of
the temperature vaersus the enthalpv for csiyvgen at a reduced pressure of
P =1,1,

r

it can be seen frem this figure that at low enthalpies the specific
voiume is essentially constant, this is a characteristic of liquids. As
the enthalpy increases the specific volume increases apprcaching values
predicted by the perfect gas law. It can be seen alsc that this change
from a liquid=-like state (region () - C)) to a gas-like state (region

@ - @\ occurs over a transition region denoted by @ - @
on Figure II-2,

It appears, therefore, that at supercritical pressures the relation
between the specific volume and the enthalpy can be approximated by con-
sidering three regions: a liquid-like, a transition and a gas like region.
For oxygen Figure II~2 indicates also that, as a first approximation, the
transition fegion can be reduced to a transition point reducing, therefore,
the problem to a '"two-region' approximation.* Since oxygen is the fluid

of primary interest to this analysis, we shall use the 'two-region'

*The '"'three region'" approximation was first introduced by the writer in
analyzing the excursive instability at supercritical pressures (see foot-
note on page 10). Following this work Dr. R. Fleming, from the Research
and Development Center of the GE Co., introduced the "two region'" approxi-
mation for oxygen. These two approximations are discussed further in
Appendix B.
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approvimation for describing the relation between the specific volume
and ihe enthalpy. It is assum. , therefore, that the "heavy" fluid (of
constant density) persists until the transition point is reached; above
this poin% the fluid will have the properties of the ‘light' phase. Tt
remains now to define this transition point.

In boiling at subcritical pressure the transition from the heavy to
che light . se corresponds to the onset of boiling. Consequently, it
will be assumed that in :he nearcritical region the transition point
corresponds to the enthalpy at saturation temperature.

At supercritical pressures it will be assumed that the tramsition point
corresponds to the transposed critical point, i.e., to the pseudo critical
point which is defined as the point where Cp reaches its maximum value.

It is discussed in Appendix A that the locus of pseudo critical points
can be regarded as the extension of the saturation line in the super-

critical region.

I1.2 TIime Lag and Space Lag

It is of interest to consider now the timewise and spacewise des-

cription of the process.*

%

If we follow a particle from the time it enters the heated saction

until it leaves it, we shall observe that its properties change from v

*We follow here Crocco and Cheng [98] who gave an equivalent description
for combustion instabilities. The same comment applies to the three
sections that follow. Indeed, this reference proved to be most stimu-
lating and useful in the course of this investigation.

i




and 1 at the inlet to vy and 13 at the exit (see Figure II-3)., In
view of rhe "two-region'" approximation we would note that the transition
frer the "heavy" to the "light" fluid occurred when the properties (specifically
the enthalpy) reached values that correspond to the transition point. The
time eiapsed between the injecticm of the heavy particle in the heated duct
and its transformation to the "light" fluid will be deroted as the time
lag €y
It i3 cf 1nterest alsc tc ccnsider the spacewise description of the
process, 1in this case the time lag must be replaced by the space lag
which 1s a vectorial quantity indicating the location in the duct where
the transformation from the "heavy'" to the '"light" fluid takes place.
Ite space lag is denoted by %\ on Figure TI-3. Of course, the space
lag can ke related to the time lag when the particle velocity is known.
Like in combustion, the location in the duct where the transformation
takes place can be regarded as the source of thewlighf'fluid. It is
obvicus that the flow properties in the region occupied by theulighf'
fluid will depend upon the intensity of this source. If it is assumed
that the injection rate of the"heavf'fluid is constant and that the time
and space lags were constang’then the intensity of the source would aisc

te independent of time resulting in a steady flow in the '"light" fluid

i
region., However, this is not the case because fluctuations which affect
the time lag and/or .%e injection rate are present both at supercritical
and at subcritical pressures. In the vicinity of the critical thermo-
dynamic point large fluctuations of properties, in particular of density, f
are observed even in non-flow systems. In boiling systems fluctuations |
i

are always present because of variations of the rate of bubble formation M

-16-
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a~3d pcpulation, of flow regimes, of the heat transfer coefficient, etc.
Ccmsequeatiy, -he strongth of the source may fluctuate even when the in-
jectio. rate 1s kept constant. It is evident also that variations of
1nlet velocity will introduce additional effects.

The nucleation and evaporation at subcritical pressures and the
transfermation of "heavy' clusters to "light'" clusters at supercritical
1ressures are rate processes that occur during aad have an effect upon
the length cf the time lag. Both of thes: cransformation rates are af-
fected ty the pressure, temperature and 'y cther rate processes such as
the rate of energy tvransfer, flow rate ic. Tf one of these factors
changes or fluctuates, the transformacion rates w:3! “Tuctuate also
resulting in a fluctuaticn of the time lag, i.c., in the fluctuaticn
cf the source. Since the source affects the flow conditions in the "light"

fluid regicn the flow in this region may become oscillatory.

I7.3 Organized Oscillations

Oscillations of a system can be always produced if properly excited.
Such oscillations can be distinguished by a characteristic time, i.e.,
pericd if the process is periodic or by a relaxation time if it is
apericdic.

Like in combustion and following Crocco and Cheng [45] we shall
distinguish twc cases: random fluctuations and organized or coordinated
c¢scillations.,

As random fluctuation we consider those that are similar to fluctuations
observed in ordinary turbulent flow. In this case it can be assumed that

the transformation process, for example the rate of evaporation in boiling

-17-




at subcritical pressures, is not excited. The fluctuations at one pocint
do not have any effect on other fluctuationc comewhere else in the system.
Since the integrated effects of these fluctuations vanish they dc not pose
a problem.

In the case of an organized oscillation the transformation process
will be excited by one or more coordinating processes such as the oscillation
of the inlet flow rate, of the heat transfer coefficient, etc. The exciting
force for maintaining the oscillation of the coordinating process is in
turn provided by the transformation process. For example, in tciling sys-
tems oscillations of pressure will affect the saturation temperature which
may induce oscillations in the rates of evaporation. These in turn may
induce flow oscillations and provide the excitation force for maintaining
the pressure fluctuations.

The fundamental character of d>rganized oscillations is that a well
defined correlation exists between fluctuations at two different points
or instants. Iu other words that a disturbance is propagated, i.e., dis-
placed in time and space through the system. When these organized oscil-

lations are present their integrated effect does not vanish whence the interest

in these oscillations. Furthermore, an oscillatory system may become unstable,
i.e., it may have the tendency to amplify. In the example cited above

pressure fluctuations of an increasing amplitude may be generated leading

to the destructivn of the system. When the effects are proportional to

the causes the system is defined as linear. 1in this paper we are interested

in such sys*ems.

-18-
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[i.4 The Mechanism of Low Frequeacy (Chugging} Oscillation at
Supercritical Pressurcs

Tt was noted in the preceding section that the characteristic of
organized cscillations is the propagation cf disturbances through one system.
These disturbances can be variations of density, pressure, enthalpy, entropy,
etc. In this section we shall examine the effects which these propagations
may have on the oscillating propensity of the system. In particular, we
shall consider the provagation of density disturcances and the effect of the
time !ag, i.e., of the space lag. The effects of pressure waves are discussed
in Szorion 11-7 together with the othe  mechanisms which may induce flow
oscillations in the nearciiiical and supercritical regions.

We ncte that the effect of the time lag in inducing combustion in-
stabilities was already analyzed by Summerfeld [523 » Crocco and Cheng(;AéX
among others. In boiling systems, this effect was already analyzed by
Profos [49‘], allis and Heasley[hso—land by Bouré [54. In these analyses
the flow was assumed to be homogeneous, i.e., the effect of the relative
veiocity between the gas the liquid phase wes neglected. A density propa-
gation equation, applicable to two-phase mixtures, which takes this effecc
into acccount was formutited in [53\ and solved in [54, 55\ .

Let us examine now the effects of the finite rates of propagation and
of the resulting time lag and time delays on the flow in a system consisting
of a constant pressure tank connected by a feeding system to the heated duct.

Consider first the tank and the feeding system only anu let us perturb
suddenly the inlet flow. If there is no feedback between the heated unit
and the upstream part of the system, the steady state conditions wili be

restored. In particular, if the variation of the flow rate is small during

-19-
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the time a tressure wave propagates back and forth through the tank and
the teed svsten, then the pressure effects can be neglected. As discussed
L (48\ the process can be described then, with sufficicent accuracy, by
an expohentizaily decaying flow which is characterized ty the relaxation
tine cinstant i.e., by the line relaxaticn time. Therefore, the system
is stabie because the steady state conditions will be eventually restored.*

Consider now the effect of a perturbed flow at the inlet of the heated
duct +Tee Figure {I-%). 1t is obvious that an oscillatory tlcw at che inlet
wiil iaduce aa oscilliatory fiow of the fluid in the duct. However, in
ahseace of a driving mechanism these osci”? -tions would also exhibit ar ex-
porential decay. We are looking for a mectun:sm whereby these flow oscil-
lations an supercritical pressures can be maintained. Like in boiling and
in combusticn such 4 mechanism is provided by the propagation phenomena
which introduce different delay times in the response of the system. This
15 showr, in Figure I1I-4,

it can be seen on Figure II-4 that an oscillatory inlet flow can induce
oszillations of the space lag; this is in ancordance with the discussion of
the preceding section. The onset of these oscillations is delayed howev~r
by tne lag time Ifb, because of the finite rate of propagation of the dis-
turtance. An oscillatory space lag, which is equivalent to an wscillatory
source, will induce flow oscillation, in the '"light" fluid region. These
source-induced oscillations will be present in addition to those already
induced by the inlet flow. Because of these two oscillatory motions there

will be a delay time Eiu in the flow response. Oscillations of the flow

*We ire assuming here that any servo-control mechanism in the feeding system
will not have a destabilizing effect.
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will induce oscillations of enthalpy and of density both delayed by a

certain dela: time. With flow and density oscillating, the pressure dr~p '
in the duct will also oscillate. 1If the conditions are such that the mini-

mum pressure drop in the duct occurs when the inlet flow is maximum, it is

apparent then that the oscillations can be maintained. It is also obvious .
that whether or not thi< will cccur will depeond on the time lag Z:b and on

the delay times O, G% , G%T . When these delay timcs do not

depend upon T b 1t can be seen that increasing the lag time Yzb has a

destabilizing effect. Since the time lag ~Zb (see Figure I1-4) depends

upcen the enthalpy difference i it can be concluded that, for this

2 " Iy
particuler case, a decrease of inlet enthalpy il’ i.e., that an increase
of lli21 has a destabilizing effect.

From this qualitative description it can be already seen that at
supercritical pressures an unstable flow can be induced by the delayed
response of various perturbations. It remains now to advance a qualitative
descrip:ion. We shall do this in tche followiug chapters by modifyiug and
applying the method proposed in {50, 51\ for boiling at subcritical

pressures.

II.5 Method of Solutio

In what follows we shall consider tie “heavy”" and the "light™ fluid
regions separately. Ea. s will be described in terms of three conservation i
equations and the vquation of state. We shall use the one diwmensional
representation and obtain solu:iions for each region. These solutions will

be matched at the transition point, i.e., at the end point of the space

lag to provide a sgolution valid for the entire system.

1 A
)

«21-




Fellow.ng [48, 50, 51] it will be assumed that the variation of
pre.sitres can te negiected. This ic implied by the assunption that tbe
tensi1ty is functicn cf enthalpy only. It can be s=en that this assumption
will te valid only if the variations of {low, density, enthalpy, etc. are
re.atively srall during the total time for propagation of a _ressure wave
“ack and ferth through the duct. Under .his condition it can be assu.ed
that rbe varicus disturbances move through a uniforn medivm, It is ap-
par=mr alsc trat this will te true only 1f the rate ¢f propagatica of

fressure waves 13 considerablv faster than the rate of propagation c¢f the

disturtances. Yecwever, beth in boiling systems ac well as in the nearc.itical

region the velccity of scund reaches very low values.* Consequently, it can
te expccted that there will be a range of operating conditions for which
the assumpticn that the properties dc not depend upon pressure variations
wiil nov be satisfied. For boiling svstems this limitation has been already
recognized and discussed by Christensen and Solberg [56] . In general,
1t can te expecteld that the assumption will be satisfied in the low frequency
ra~ge, i.e., in "chugging" oscillations. When the effects of pressure vari-
aticns can te neglected then one can use the formulation put forward in [501
and carried cut in [51\ for boiling systems at subcritical pressures.

The method of solution used in this paper is s follows. A small per-
turbation is imparted to the inlet velocity. The velocity of the fluid is

det¢vmined then b: integrating the divergence of the velocity. With the

*Indeed, in the criticel region snme authors reported values approaching a
zero velocity. At present neither the exact value of the velocity of sound
at the critical point is availalle ncr a satisfactory understanding of the
phenomenon has been attaired.
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velociiy km~wn _he energy equation is integrated to cttain the time lag Y:k
as well as the rare of precpagatica of enthalpy disturbances. Frem the
enthalpy and from the egquation of state we rthen o%tain the density cf the
medium. The differentiation between the nearcritical region and the
supercritical region is achieved by assigning the appropriate expressicn
to the equation cf state. With the velocity and the density known, the
mementum eguation can be integrated. Simce the i~iet disturtance is small.
tte memeaturm equaticnm is first linearized and thea integrated te give the
characreristic equation,

Fecause of rhe linearizatica of the momentum equation the analysis
will be applicable cnly to cases where the effects of the instability are
not so stroag to produce large amplitude cscillations. It can be used there-
fore to predict the conditions of incipient instability, i.e., to deteruine
stakility limits. As discusszd in [481 andiSO, 51\ linear effects and formu-
lations have teen successful in predicting certain type of instabilities
("chugging" instatilities) in combustion and in beiling systems respectively.
A similar result could be expected, therefore, with the present formulatiocn if
it is used te predict the onset of "chugging' instabilities at supercritical

pressures.

II1.6 The Characteristic Equation and Its Applications

g ———

The characteristic equation for this problem is an exponential poly-
nomial, it is therefore of the same form as the characteristic equation for

ccmbustion instabilities [48] , thus
] "Sz ’
(:(S) = Lis)—e bLz(S) = 0 II-1 A
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where 1, and Lz are polynomials wich coefficients independent of the time
and where s 1s a root of the characteristic equation.

In general, the root s is a complex number; the real part gives the
arplificaticn coefficient of the particular osciliatery wode, whereas the
imaginary part represents rhe angular frequency. Since the original per-
ruertatlon is assumed to be of the form expL st-]9 a given oscillatory mode
w111 e stakle, neutral or uastahble depending upor whether the real part
~f s is less, ejy:al or greater than zerc. A sufficient corndirion for the
sustem 1. %e statle 1s therefore that the characteristic =quation {Eq. II-1)}
kas =e rocts in the right half of the complex S plane.

let us examine ruw what iniormation can be obtained from the character-
istic equaticn as well as the type of practical problems where this information
can be applied most usefully. Two such proplems were discussed by Crocco and
Cheng[.48] in connection with the stability analysis of combustion systems.
The same discussion can be applied to the present problem.

in the first class of practicai problems cone is interested inf deter-
wining whether a given svstem with specified characteristics, i.e., with
specified numerical ccefficients is stable or unstable. This is most ofpen
a situaticn that arises during the plarning period, i.e., before the system
is designed and tested. The characteristic equation can be used to provide
an ansver to this type of problem. Imn particular, sinc: the numerical co-
etficients in the charactevistic equation are known, Croccc and Cheng [48f]
note that the use of Satche's [SBX diagram is most useful forAanalyzing the
exponential polinomial obtaining thereby a solution for this type of problem.

In the second class of practical problems one is interested in the

gualitative trends of the stability behaviour of a system when various

-24-
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parameters are ranged. This is most often a situvation that aris.s dnring
the design period pecause of che designer's nezed either to design z system
with sufficient safety margins or to medify a given unstable system in order
te make it stable. For this kind of problem Crocco and Cheng [48'1

note that it is advantageous to use the characteristic equation for dewer-
mining the stability boundary of 4 certain system. On such a boundary,
expressed in terms of the operatirg characteristics of the system and of

the process, the oscillatory mede in guestion is neither stable nor unstable,
i.e., the real part of s vanishes for that mede. The stabiliry boundary
divides therefore the space formed by the parameters of a given system into
different dcmains in which the system is scabl: on one side of the boundary
and unstable cn tne other. JTf by varying one parameter of the system the
stacility beun. 1y is shifted in such a way as to decrease the unstable
dowain, the variaticn of the parameter has a stabilizing effect and vice
versa.,

Followirg the standard procedure the stability boundary is obtained
from the characreristic equation by setting s = i W, where «w 1is the
frequency of the neutral oscillation. Upon separating the real and imaginary
parts of the characteristic equation one can eliminate the frequency ¢ ,
the resulting equation represents the stability boundary. Two such boundaries,
obtained fromr characteristic equations given by first and second order ex-

ponential polyuomials, are shown in subsequent chapters.

II1.7 Additional Mechanisms Leading to Uanstable Operation

Before proceeding with the formulation of the present problem we shall

note and examine briefly additional mechanisms which can induce flow oscillations

in the nearcritical and supercritical regions. These mechanisms will be

analyzed in more detail in separate publicatiors.
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It is instructive to note rirst a general characteristic of oscillatcry
systems, A necessary condition for maintaining oscillations is that enough
evergy 135 supplied to the system at the proper frequency and phase relation
in srder to cvercome the losses due to various damping c¢ffects which are
slways present in real systems. When the rate of energy supplied is control-
led tv an external source and is independeat of the fluctuations inside the
svstems, the oscillations will buiid up when the energy is released at a
characteristic frequency giving vise to the resonance phencmenon. However,

wher the system centains itself an energy source, with a property that the

energy release depends upor a fluctmation inside the system, then an accidental

small disturbance in the system may interact with the source resulting in
oscillations of increasing amplitude. For this to take place it is necessary
that the energy from the source be fed to the disturbance during part of

the cycle.

It was discussed in preceding sections that the system which is analyzed
in this paper has the proverty that the energy release depends upon fluctu-
ations inside the system. Oscillations of the time lag and of the space lag
are examples of such f’ctuations. We shall examine now other energy sources
and fluctuations which may be present in thec system.

It was discussed by Rayleigh [59-lthat internally driven pressure
oscillations can occur in a system comsisting of a gas flowing through a
heated duct. For such cscillations to be maintained Rayleigh notes that

the energy must be added :0 the gas during the moment of greatest conden-

sation and removed during the rarefaction peiriod. This leads to the Rayle_gh's

criterion which states _hat a component of the fluctuating heat addition must

be in phase with the pressure wave if oscillations are *o be thermally driven.




The same criterion can be used to explain a type of oscillation ob-
served at critical and supercritical pressures as well as in boiling
mixtures at subcritical pressures. In both systems the heat transfer co-
efficient is a strong function of pressure. Thus, pressure oscillaticns
may interact with t1e heat transfer coefficient inducing oscillations of
the latter. If these oscillations are in phase, the system may be thermally
driven and becowe oscillatory.

Another mechanism which may induce oscillations at both suberitical
and at supercritical pressures is caused by the large compressibility of
some p.rts of the system. At high pressures this is the secticn of the
system where the properties of the fluid pass through the nearcritical
region., At pressures belcw the critical point, this will be the section
ot the system where subcooled boiling takes place,

Still another mechanism that can induce oscillations at subcritical
pressures is caused by the change of flow regime which can induce large
tluctuation of the mixture density. These in turn may induce both os-
cillations of the flow and of the heat transfer coefficient thus providing
the driving force necessary for maintaining the oscillationms.

It can be expected that each of the mecuanisms may be effectiv> over
some raage of operating conditions. It can be also e..pected that the
resulting oscillations are characterized by a certain frequency range and
by particular wvave forms. Indeed, several frequency ranges and wave shapes
have been reported and described in the r:7erences discussed in Chapter I.
The mechanisms just described will be the subject of future investigations;

in what follows we shall proceed with an analysis of the 'chugging'' oscillationms.
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III. The "Heavy' Fiuid Region

ITI.1 The Geveraing Equation

For a "two-region'" approximaticn the "heavy" fluid region extends
from the entrance of the heated duct to the transition point. Note,
that for a system with constant energy input, the leocation of this peint
will move along the duct when the inlet velocity and/or the inlet enthalpy
vary.

It wili be assumed that the fluid in this region 1s iucompressible
and that the thermodynamic properties are coastant. The problem is formu-
lated by considering the three field equations describing the conservation
of mass, momentum and of energy in addi’ on to the constitutive equation
of state describing the properties of the fluid.

Fcr a one dimensional formulation, used in this analysis, the con-

tinuity, energy and momentum equations are given respectively by:

¢, A D I11-1
— Y = =
it % By

’L 4+ U /D_{' = a'? III-2
1t % ? A

and

__“op Mgy M Lpmt
2% et 1-?6 13 -\_%F-f- D CF III-3

where the symbols are defined in the Nomenclature.
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The ccastitutive equation of state is given by:

= Consl
7S s

ITII-4

Equaticns III-1, 2, 3 and 4 are four equations which specify the four
variables'Tﬂ<}QA and 1 in the "heavy" fluid region. These four
ejuations will be integrated tc yield ’?lflﬂA and i as function of space
and <f time. These will be then used to determine the time lag and the

stace lag.

I71.2 The Equation of Continuity and the I!ivergence of the Velocity

In view of the assumption of an incompressible '"heavy'" fluid the con- -

tinuity equation reduces to the divergence of the velocity

) -S III-5

whence upon integration we obtain
us ult) I1I-6

The velocity in the "heavy" fluid region ic therefore independent of
pcsition, it is a functicn of time only.

In order to analyze the stability problem we shall assume that a small,
tine dependent velocity variation 6\V\ , Ls }uperimposed on 2 steady inlet

velocity W » thus:

- _ St :
Ult) = Wi = nrte - 111-7 o




where the tar indicates steady state conditions,

IT1-3 The Energy Equation

With the fluid velocitv given by Eq. III-7, the energy equation becomes.

0y 2 13

ol 70?5'

I[T1-8

This is a first order partial differentiil equation whose solution can be
ottained bty means of characteristics {60, 611 . The general solution cf

Eq. III-8 is of the form:

\ﬂ_ = F (\m I1I-9

where

\fz ( L'fv'ﬁ) = Ca ond ‘(x (C) 3]{:) = (;2

I11-10

are sclutins of any two independent differential equatiors which imply

e st b et RNeAN b

the relationships:

df = _d_i_ - _d__t._ I11-11

E——

o 43
Q;Ag

For example, by taking alternately the first and the second equation, the

first and the third equatiin we obtein the following set

i _ . et
n
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di 4

t Q A(_ III-13

in order to solve the problem it is necessary to specify the initial
and the boundary conditions. 'These will be specified by letting a particle

enter the duct with enthalpy i, at time T, , (See Figure 1I-3) thus,

(= l',‘ at %: 0 oawd t’ T, 111-14

With this boundary and initial condition, one ottains after Integrating

Eq. III-12 and III-13 the following relatioms:

_ st Ss(t-T)
3 =UR"T)<e€ [;-e ] I1I-15

H

and

L= A3 _ (41,
y hor ff_Ag ({ 1) I1I-16

Upon el sinating the time f-1; , between these two equations we obtain

an expressicn for the enthalpy as function of space &nd time, thus:

St a0 Stk -
b ’ ) —S(‘- L‘ I11-17
w6 (i-L) A + e€ |1 _e ey

% 7T ax s
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The first term on the right-hand side is the steady state term, whereas
the seccend one is the transient which accounts for the perturbaticn ot the

inlet velocity.

I1I.4 The_Time Lag and The Space Lag

In Section II-2 the time lag Z%f was defined as the time required for

increasing the enthalpy of the fluid from the inlet value i, up to the

1

enthalpy at the transition point 12 (See Figure II-3). Consider now a

fivid whichk enters the duct at time '2:1 and attoins the enthalpy i2 at

t 1me 7:2; it follows then from Eq. III-16 that the time lag is given by:

' ' l
T, = T,-T = (‘z“q)-;f-;—‘ I1I-18

which, in view of Eq. ITI-13 can be also expressed as*

T, = 4ty _ 4y I17-19
du %3
at G Ac

It can be seen that for a yiven system and at a given pressure the time

lag depends only upon the enthalpy difference (12 -1 Aﬁ*\\ ) and the

1-

heat flux density.
We shall determine now the space lag. For a "two regicu' approximation.
Figure II-3 indicates that the'heavy'fluid region extends up tc che transition

pcint where the bulk fluid enthalpy reaches “he value of i Inserting i

2"
in Eq. III-17 we obtain the following expression for the space lag:

2

- st s Cediv A
Alt) = -M'—a:f.éﬂ_& + %E_ {‘ —_e } 111-20




For steady state ogzration £_= 0, whence we obtain from Eq. III-20

the steady state space lag A , thus:

—_ iz 62 lﬁilJ A(L
A - - I-I'?_l
43

In view of Eq. III-18 and III-21, we can also express Eq. III-2C as:

- S,
A= M T, + if %'—_S_ ) I11-22

[

or

AE) = A + 5A ITI-23

Several commert:c are appropriate.

1) Equations IIT-18 and III-ZL indicate that for steady state, i.e.,
when E_= 0 the time tag le corresponds to the transit time.of a fluid
particle through the "heavy" fluid region.

2) Equation III-22 shows that the response of the space lag .0 a
variation of the inlet velocity is delayed by a time period equal to the
time lag -Cb'

3) 1If we intevpret the enthalpy 12 as the erthalpy at saturation and

therefore the difference 41 by the subcooling then Eq. III-22 predicts

21
the location of the boiling boundary, i.e., the location where boiling
starts in a twc-phase mixture at subccitical pressures. Indeed, such an

expression was derived previousiy (ia [49, 50, Sf] amoug others, using

somewhat different approaches) for analyzipg oscillations in boilir.g mixtures.

-33-

W:TW o

s

P SN O Amwwﬂ 3. -
t:rsuaul l-u—aun--ll"'!.IMI‘IIJII!IN!"""‘:r- [ ] I"' - I " Rl

\



The rime lagy T, was called there the "evaporation time constant" [ﬁé] .
|9

TI11.5 The Momentum Equaticn

Thke momentum equation can be integrated now since the velocity in
and the boundaries of the "heavy" fluid region have been determined. With

the toundary conditions taken as

’Pt ?l af %ﬂo

(Y

at 3= Al

I1I-24

the integrated momentum equation becomes
T, Alt)
1

_dP-—. % U]ZM_' Lul d -
o e b e

i

where we have taken into account the assumption that the density in the
"heavy"fluid region is constant. In view of Eq. III-5, III-6, III-7, and

ITI-23, the integrated momentum equation yields:

2 e III-26

-7 =g€[3_ff_w ‘g o+ itb(anau.)‘ (X +8N)

Linearizing Eq. III-26 and retaining only the terms with the first power

of 7. we obtain:
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I1I1-27

We shall consider ~ow the pressure drop across the inlet orifice.
Defiring ty kj a mumerical coefficient that takes intc account the effect
~f tre geomerry of the restric-ion and cf other losses like vena contracta.

etc,, we can express the inlet pressure drop across the inlet orifice by:

L ‘ -
I S -2

which, upon linearization can bz expressed as:
st
LA CR A —9(:("_2%&6 {1129

We define now the steady state values of the pressure drop due to

body forces (gravity) by:

—

III-30
due to friction by:
A L e e W
‘ 2p * III-31
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and due to the inlet orifice by:

1I1-32

In view of these three relations and upcn substituting Eq. III-29

in Eq. I11-27, we can express the pressure drop in the "heavy'" fluid

region ty:

— e

?o—?z == ﬁm + 41, +A?"€ -

(6T 48 +z§95fw . 1R gu {2 2271 1)

+
[ ot DN, et £)) ax I11-33 )
where
st
U, = €€ ( !
III-34 i
and
st -sT, 3
fiN =€ (1—e ) ,
N III-35

The first line on the right-~hand side of Eq,, I1I-33 represents
the sum of the steady state pressure drops, whereas the second one accounts
for the transient response. In particular, the first term is the inertia
of the "heavy" fluid region; the second termare the pressure losses due to

. variation of inlet velocity whereas the last term shows the effect of the
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varying space lag.

Equation ITI-35 indicates that this iast effect is

dclayed ty ctime lag .[L° We shall proceed now with the analysis of the

"l1ght" fluid regior.
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IV The "Light" Fluid Region

IV.l The Governing Equation

For a "two region" approximation the "light" fluid region extends
from the transition point to the exit of the heated duct. The problem

is formulated again in terms of three field conservation equations and

of a constitutive equation of state. However, in contrast to the "heavy"

fluid the density in the "light" fluid region is function of enthalpy
and of pressure. It was discussed in Chapter I1 that for 'chugging"
oscillations, the effects of pressure variations can be neglected.
Consequently, the density will be a function of enthalpy only.

The "light" fluid region is described, therefore, in terms of the

continuity equation

3¢ )§ DM
-+ Mo o = -
b " -+ (’ 73 O Iv-1

of the energy equation

ZQE_ —+ M ]ZE__ _L_
¢t 7 e A

V-2

the momentum equation

P
3 Q + h‘ *3?*’ e'u V-3

and the constitutive equation of state
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6 = ? (L)
IV-4
cr

Vv = QT(C\ 1v-5

when expressed in terms of the specific volume 4o

Equations IV-1l, 2, 3 and 4 are four equations in terms of four
variables—P, Q , M and i. They are applicable to the "iight" fluid
region at supercritical pressures. They can be also applied to the
two phase flow region at subcritical pressures if, and only if, the
relative velocity between the phases can be neglected.

It is emphasized here that the form of the energy and the form of
the momentum equation, as given by FEq. IV-2 and Eq. V-3, are correct
only if che relative velocity between the phases is either zero or its
effect is negligibly small. If such is not the case, then both Eq. IV-2,

and Eq. IV-3 must be modified.

It was discussed in Section II-5 that at high pressures, say above
0.85 of the reduced pressures, the effect of the relative velocity is
so small that it can be neglected. The region of iaterest to this analysis
is the high pressure region. It can be expected, therefore, that, in
this investigation, both Eq. IV-2 and Eq. IV-3 can be used to approximate,
with sufficient accuracy, the energy and the momentum equation for the
two phase mixture in the nearcritical region.

In what follows we shall use, therefore, Eq. IV-1 through 4 to des-

cribe both the "light" fluid at supercritical pressures and the two phase

-39«
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mixture in the nearcritical region. The differentiation between the
"light" fluid and the two phase mixture will be realized by assigning
the appropriate expression to the constitutive equation of state. This

will be done in the section that follows.

IV.2 The Equation of State

For the "light" fluid the relatica between the specific volume and
the enthalpy can be obtained either empirically, i.e., from experimental
data or it can be approximated bty an equation of state such as the per-
fect gas or the van der Waals' equation etc. It was noted in Sectiown II.1
that for oxygen the perfect gas equation predicts with sufficient accuracy
the relation between the specific volume and the enthalpy. Since this
fluid is of primary interest to this investig;tion, the perfect gas
equation will be used as the constitutive equation of state for the “light”
fluid at supercritical pressures.

Assuming a constant pressure process we have for a perfect gas the

following relations

_ Ryt
dv = = IV-6

and . —
di = cP adl
IY-?

whence

Iv-8
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For a "two-region' approximation the boundary condition for the "light'’

f1cid region is given by:
F 2 V-9

We cobtain then the equation of state for the "light" fluid region by

integrating Eq. IV-8 subject to the boundary condition given by Eq. IV-8,

thus:

. R .
V(L) = '\T{_ + — (1=4) IV-10
Pcp
We shall derive now the equation of state for the two phase mix-

ture in the nearcritical region. We recall first that the quality x,

of a two phase mixture is defined by:

A= ‘_(3_ v-11 i
G
Gt Gy

P,

PR

where Gg and Gf are the mass flow rates of the vapor phase and of the
liquid phase respectively. We recall also that the specific volume

and the enthalpy of a two-phase mixture are given by:

Vo= (1-X)Ve + AV v-12

and

\ ' Iv-13
L = (l"'X)Lf + XL? P o
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Where V7, if and U;, ig are the specific volume and the enthalpy of
1
the liquid and of the vapor respectively.
We obtain then the equation of state fcr the two phase mixture by

eliminating the quality x, between Eq. IV-12 and Eq. IV-13, thus:

H A‘V‘ * n
Wiy =V, + =8 (- -14
+ 2
Atﬁ
Wrere A“J . =" « AJ_, and where Di is the latent heat of vapori-
ig g f fg

zatic1. Differentiatiug Eq. IV-14 we o*tain for the two phase mixtuire:

(dV) Av&fz

: = - Iv-15
du fp A Lm

which can be compared to Eq. IV-8 apolicable to the "light" fluid at
supercritical pressures.

It is important to note that both, the equations of state for the

"light'" fluid at supercritical pressures, i.e., Eq. IV-10, and the equation

K

of state for a two-phase mixture at subcritical pressures, i.e., Eq. IV-14,

[N T R

are of the same form, i.e., toth can be expressed as:

V() = v + (j?r)i; (i—L,) IV-16

We can use, therefore, Eq. IV-16 for the equation of state in the necar-
critical as well as in the supercritical region. We shall distinguish

one region from the other by substituting either Eq. IV-15 or Eq. IV-8

in Eq. IV-16.
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I1V.3 The Equation of Continuity and the Divergence of Velocity

Several methods are available {49, 50, 51, 62] for dete..nining the
velociry in a boiling mixture. Any of these could be modified and used
to determine the velocity in the "light" fluid region. In what follows
we shall use the method of Bouré ESIX .

As in the "heavy" fluid region we shall determine the velocity by
integrating the divergence. However, in contrast to the 'heavy" fluid
region where the divergence is given by Eq. III-5, the divergence in the
"light" fluid region .s not zero but is obtained from Eq. IV-1l, thus:

e v
:0}4_ ir s W D—L v-17

|
M O 0TS LY

In crder tc integrate the divergence it is necessary ic evaluate
the right-hand side of k.. IV-17. Following Bouré this -z be done by

means of the energy equ:x: i1nn,

Since the density is function of enthalpy only o:. .. write
14 e LT .
M - [”"“ Yoy Iv-18
ot L du L0 $ %y _

Substictuting Eq. IV-2 in Eq. IV-18, it follows that:

. | de ay
fot .‘-M(as _e 6“ A, 1v-19

whence from Eq. IV-19 and IV-17 we can express the divergence as:
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(3 - P dl  Ac IV-20

We shall define now the reactinn frequency* [ hy:

dv, 4% | dC gy
Sl o= ( dT——p A, 2;[—_ - .

It follows then from Eq. IV-8 and Eq. IV-2l1 that the reaction frequency

for the "light" fluid in the supercritical region is given hyv:

43

o XX
Pcy A

3

Iv-22

whereas it tollows from £y4. IV-15 and Eq. IV-21 that for toiling at sub-

critical pressures the reaction frequency ic given by:

A L“ —;: Iv-23

With the reaction frequency defined by Eq. IV-21, it follows then

from Eq. IV-20 that we can express the divergence as:

,n ' IV-24

*The reasons for using this definition are discussed in Section IV-9
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The physical significance cf this equation is simple: the divergence
~f ite velccity in the "light” fluid region is equal to thne volumetric
rate of fcrmation of the "light" fluid per unit volume of space.

Ia order to integrate Eq. IV-24 it is necessary to specify the
“cundary conlditions, these are given by considering the velocity in the
"teavv" fiuid region, i.e., Eq. III-7. The boundary condition for

E5. iV-24 is therefcre:

- - st ‘
) — "Mn +JMI :.M,*i,e ﬁt -§=A(t)
IV-25

wher.ce uvpon integraticn of Eq. IV-24;, we obtain for the velocity in the

"“Light"” fluid region the following expression:
- st '
MB"“ = W+ E.e -+ fl [_73"' A“‘)] Iv-26

We note that Eq. IV-26 with . given by Eq. IV-23 is the velocity
in the twc phase boiling mixture, as such it was used already in (49,50,5land 62,)
It is instructive to examine further Eq. IV-26, which, by means of

Eq. 1IT-23, can be expressed as:

_ - st st
UWat) = U +N(3-A) +€€ —Q es_e () —et™)

Iv-27

1=

We obtain the steady state velocity ip the "iight" fluid region by letting

€ =0 in Eq. IV-27, thus: -




G*(g) _ h+ n(3-A)
IV-28

We can rewrite then Eq. IV-27 as:

———

Ut = Uply)+ 34y (F) IV-29

where the time depende t perturbation of the "light" fluid is given by:

St st _stb
Sylt) = du-ndh — ge —ﬂ%g (1-¢ ) w-30

It can be seen from Eq. IV-29 and IV-30 that the flow in the "light"
fiuvid regicn is affected ty both the inlet perturbation as well as the
perturbation of the space lag. This last perturbation is delayed by the
time lag -tb (see Figure II-4).

We shall define now several steady state relations which shall be
used ig following chapters.

By letting z = e-in Eq. IV-28 we obtaiu the steady state velocity

at the exit of the heated duct, thus:

a.‘(l) ,,65 = W + -S'?-U."-’-‘) Iv-31
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Tre leng ltwise average velocity in the "light'" fluid region is defined

ty:
[-%
\ | -
l——
IV-32
0
wrence frem Eq, IV-28 we cbtain:
— n (¢-%)
Uy = W . 1v-33
From Eq. IV-31 we have:
LX) = &, =W,
LL(4-F) 3 ' IV-34

Schstituting this relation in Eq. IV-33 we have the following expressiomns

for the average velocity:

— _Q(Z‘X) a; -HI.
M = —— -— ————_——
(Uay = % - N 2 1v-35

'he log mean velocity in the "light'" fluid region is defined by:

u Uy -1, o (L-%)
“ s 0, & 1v-36
= V)
U. u‘

where we have taken into account Eq. IV=34,

T— ———ggr——" -
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A fourth relation of interest to this investigation can be obtained
from the conservation of momentum G and the definition of the log mean
density. If we denote by Q 3 the density of the fluid at the exit fror

the heated duct, then the log mean density in the "light' fluic region is

given by:
? — 0y -
o /e'n —q'l Iv-37
€¥

The mean velocity, based on the log mean density, is then obtained by

considering the mass flux density, i.e., the momentum G, thus:

Qo w

Iv-38
Cr

G
Con,

which, in view of the preceding reiations can e expressed also as:

W

)

G

= = — - V-39
V‘m M3_Ml W ul*\\

We can proceed now with the solution of the energy equationm.

IV-4 The Energy Equaticn
We can soive the énergy equation now since the velocity and the equation

of state in the "1light" fluid region are specified. By substituting Eq. IV-26




5-d 1v=16 1r Eq. IV-2 we can express the energy equation as:

Dl

" ] 2L l mr) iy 4%
l/l .(’ — 55 -— =y
WHH) * 5 ' )Jf()-% [ Qf- ( di P (L L )J Ac IV-40

~

Takirg rhe enthalpy i, at the transition point for reference and in view

2
.f the definiticn of the reaction frequency _{L , given by Eq. IV-21,

e taw rewrite Eq, IV-=36 as:

e N D0 LS S ST
1t ™y CeAc
IV-41

The initial and boundary conditions for the energy equatium are de~
termined by considering the conditions at the transition point (See Figure
IX-3}: they are given therefore by:

L—Ll = 0 O‘t t =rl.
1V=-42

A‘ — sz. -
L-—LL = 0 ab ’é‘—‘A(TL):‘. /\.,.2,@ ;<~‘ se )

IV-43

Equation IV-41 is again a linear partial differential equation, it
can be solved therefore by the method used in solving the energy equation
for the "heavy" fluid (See Section III-35. Following this procedure, we

obtain in place of Eq. III-11 the following set:
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dt d% . d(f'—t‘—)

_—  ——

Uy(3) + TU (b 9%

(=L
Q_M 4+ N (1-4) —
whence:’
-ST
d% _ | - - St c.fnene
4 _ J+ SUgt) — Wt D(3-A)4 £ S=ottdl€
At ) e *AREA) - s IV-45
and
d(l-f.,) = —-C—’f— +.D-(i"""1.)
dt efh IV=-46

Integrating first Eq. IV-46 and taking into account the initial con-

ditions given by Eq. IV-42 we obtain:

/ iy Sehe t-7.)
2\\ | -}-_('L(l L;)—a'fg—]'-——‘n.(— 2) IV-47

whence:

Iv-48

Bt a8 e




L1 order tc integrate Eq., IV-45 we note that it is of the form of-

R S R A1
it d ) IV-49

whose solution is:

P3 - {p(g)e\li) d¥ = Const IV-50

e-f-ﬂa‘; e-_nt

where t — —_

The integral of Eq. IV-45 is therefore:

(s-n)t -ST
. e—f'b+ W - e-—“b ce (s-.nme S c
3 P S = L Iv-51
which, in view of Eq. IV-48, can be expressed as:
-Nt, - -t
W = eSf S-n+ne ""‘

ne o 15‘1‘? -h - & S (5- 1) ]= c, IV-52

) + LN (L-1,)

4%

The value of the constant of integration is evaluated by means of Eq. IV-42

and IV-43, thus:

= st, ST st -J(s]
=T, | W | -e 1 s-nt+tne
I — + te (_ -t —_—
C, =e Y + 3 ) 3 s(-n) Iv-53

et iard




Substituting Eq. IV-53 in Eq. IV-51 we obtain after some re-

arrangement:
st ~5Ty

o A [ 1mam ] -

which, in view of Eq. III-23 and Eq. IV-3u, can be expressed as

S
é’nﬂ (8 - o 3“17, =

IV-55

-T. -sl{t-Ta)
dm:‘_g A\ - HET L L ‘W'*H

By substituting Eq. IV-48 in Eq. IV-55 we obtain the solution of the

enevgy equation for the specified initial and boundary conditions, thus

a.cr“) - _,i— (lm‘

| + ne(-*c("-‘i-z’ _
%3 = -s(t-r»)m a g™ 1yise

from which we obtain the enthalpy for the "light" fluid region
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b :(’:'f.ﬂ. “{”)sn (T -
_ -s(t-T. —$(t-
£ W+ e .n5 _;&;- L%Mj
IV-57

Expanding and retaining only the first power of & we obtain after some

rearrangement

- ~s(tk-Ty) _sTy

&’W o S)su,_“t‘f’ue e {u

L, =

L

—

! e{'A‘ UgA s-n IV-58

U,

1f we let the perturbation go to zero, i.e., & = 0, we obtain from

Eq. IV-58 the enthalpy for cteady state operation, thus

o -7
L-4, = iﬂ_) 1V-59

E]c; Ac

1V-5 The Residence Time

It is of interest to evaluate now the steady state residence, i.e.,
the transit time of a particle in the heated duct. Denoting by 13 the
enthalpy at the exit and by T 3 the time when a particle reaches this
enthalpy we obtain from Eq. IV-47 the residence time in the "light"

fluid region, thus:

-53-
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IV-6u

which, in view of Eq. 1V-21, can be expressed also as:

O P R P AR

Denoting by Q =%§{, the rate of energy transfer to the entire
duct and by WV“, the mass flow rate, we can express the total energy

balance in steady state as:
(¢,- b))+ (- L) = % 1V-62

Substituting th.s relat.on in Eq. IV-61 and in view of Eq. III-18 we
obtain the following expression for the rcsidence t.me in the heated

duct:

wen = S (A e

IV-6 The Density and the Density Perturbation

The density in the "light" fluid region is given by the equation of

-54-
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state, i.e.. by Eq. IV-16, which, in view of the definition of the re-

action frequency Jl,, given by Eq. IV-21, can be expressed also as:

o , - Co
(- - | _}_lgzﬁ_);q(l-t,)___])r_Q?Ag(t—t.,_‘)

oA

Since the cnthalpy in the "light" fluid region is given by the
solution of the energy equation, i.e., by Eq. IV-56 we can express the
density as function of time or as function of time and space. Thus by

substitutinz Eq. IV-64 in Eq. IV-47 we obtain:

‘ -nlt-t
\-)(t"[;) f ﬂ( ‘ ) IV-65

_(’T—.

whereas by substituting Eq. IV-64 in &q. IV-56 we obtain:

—s(t-Tv)

_ -s{t-7.) N
e, — , IV-66
S-n

which, by meaus of Eq. IV-3u, 111-20 and III-18, can be expressed also

~s{t-T3)
- n u
Qh»‘” . U — S~ € ‘S l
e — N IV-67

=-55-
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»

or, in view of Eq, IV-65, it can be transformed in

Sin _s1
— -Q' Q““t) b ¢
?(BI{) (/‘! - $—- L [ e‘ ] < Uu'
—e— = — -Sl IV-68
t (3) — W
U«l 3) - n 5 ‘;

Using again the binomial expansion and retaining only the first power

cf ¢ we can express Eq. IV-67 as:

Qtl O W ( gy ST s
== 7 = 0 - € T IV-69
1 iy S ) ) W) G| '
Similarly, we can expand Eq. IV-68 aud express it as: .
; -
—— —~— — 5/_,'1 _g'r‘ 3
Q“i” - U N n W {é\hl __[T(A‘_-‘] e §M|‘% i
(’(, Uy ! =R yly) “a13) Ugld) W Iv-70 :
§
where the steady state velocity ﬁ,(}) is given by Eq. IV-28.
By letting ¢ = 0 in Eq. IV-66 we can obtain the local steady state
density in the "light" fluid region, thus:
3) W Wy
= = = - Iv-71
O Uy () u + 2 (%-A)
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We shall define now several steady state relations which will be

used in the tollowing sections.

By letting g = l, in Eq. IV-71 we cbtain the density at the exit

from the heated duct thus:

QL) = Q,} = = _&‘ 1V-72

where we have taken into account Eq. 1V-31.

We shall define now the average density in the "light" fluid region

(-7

Ky = S ) dy 1v-73

9

cn .k

wvhence from Eq. IV-71 we obtain:

IV-74

M, Uy
< = — Ar —
(0 = 15

In view of the definition of the log meaa velocity U(” given by Eq. IV-36 :

this average density carn be expressed as:
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<Q‘l> = —__—G—— b Ys -——G——- Iv-75

ME_ a| TA.| u(%

We have already defined the log mean demnsity by:

IV-76

where QS is given by Eq. IV-72,
A fourth expression can be obtained from the definition of the
average velocity'<vé> given by Eq. IV- 35 and the momentum G . We

can express therefcre a mean density, based on the average velocity,

&<

by:
0 - & & o2&
~ CUg) W+ __n('g-M Uyt

Iv-77

With the steady state density in the "light" fluid vapor given by

Eq. IV-71, we can express Eq. iV-69 as

m - _@ 4+ _J_e_(s‘_ﬂ 1V-78

3 2 3

§
%
é
i




where the density perturbation is given by

SQ(’M) = ok ¢ % 5“1 - € & IV-79

S Uty | E O

which, in view of Eq. IV-3J, can be expressed also as:

..Q(t’-ci)

Cota 2 it G (Yu! ﬂJ}" ‘Su’
AN\l = Tn T — - = - N IV-80 -

S 413 u‘am g (3) !
By letting S = { in Eq. IV-79 we obtain the density perturbation v
at the exit from the heated duct, thus ;
_S(-Cs"‘-Cl) *
ye. - ﬁ'_Qg dug  _ e 5“'-77 1v-81 :

It can be seen from the preceeding equations that in the "light"
fluid region the density perturbation is affected by both the perturbation
of the inlet velocity and by the variation of the space lag. Further-
more, the effcct of the inlet velocity perturbation is delayed by a
delay time., Equations IV-30 and IV-80 are the quantitative expressions
for the flow and density variations in the "light" fluid region which

were qualitatively described in Section Ii-&4,
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With the density and the velocity in the "light'" fluid region
given bv the expressions derived in this section and .n Section IV-3
respectively, we are in the position to integrate the momentum equation,.

IV.7 The Momentum Equation

In order to integrate the momentum equation it is necessary to

specify the boundary conditions, these are given by:

P27, wt 3= A

P Ty ut 3 = A IV-82

whence the integrated momentum equation becomes:
% 4
(0 U g d
_|dP = ‘<_+qu ﬁ¢+,_¢u 3

nt Iv-83

[ Alt)

The expressions for the density and the velocity which should be
substituted in this equation are given by Eq. IV-78 and Eq. IV-27,
i.e., Eq. IV-29 respectively, We shall consider now each term of Eq.
IV-83 szparately.

IV.7.1 The Inertia Term

The inertia term in the momentum equation is given by:

l

W
AT, = f %43
M)

Iv-84
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Substituting Eq. LV-78 and Eq. iV-27 in Eq. 1V-84 and retaining only
the first power in g we get:

st -STs
e (s-nane )

s S

V-85

In view of the definition of the average density and c{ the veloc .ty

perturbation given by Eq. 1V-75 and Eq. IV-3 , respectively, the inertia

term can be expressed as:

IV-86

- U
A = (L-FV(8) 454
T,

IV.7.2 The Convective Acceleration Term

The convective acceleration term in Eq. IV-85 is given by:

A?a = QM 7)—5‘ ""s Iv-87

At

Substituting Eq. IV-78 and Eq., IV-27 in Eq. IV-87 and retaining only the

first power in ? we obtain upon integrati:in:
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I gl
W S
-S$Ty
— st
C Ih “b ¢ e o j—ﬂ'f'-n(
i ] 5 3
IV-88
sk -5Ty 4 -5 (T3 T) =
_ G te e <—~\ | — e __>
j—.ﬂl Dl;

It is of interest to examine the physical significance of the various
terms.

If we let ¢ =0 in Eq. IV-88, we obtain the steady state acceleration
pressure drop A?a , which, in view of the definitions given in Sections

IV-3 and IV-6, can be expressed as:

—

A?c‘ = G n('("/—\) — G(‘I’s"z;)) =<€,>u(u(‘7)-a') =

b3 o 1 . - )
iy dm -
" ef' (3 w

The second term in Eq. IV-88 can be expressed by means of the

Eq. 1IV-89 and of the space lag variation defined by Eq. III-22, thus

-2~




Gnee 117 % t _Afe g

({-N

IV-9.

It shows, therefore, the influence of the variation of the space lag on
the acceleration pressure drop in the "light" fluid region.
In view of Eq. IV-89 and Eq. IV-30, the third term in Eq. IV-88

can be evpressed as

st ~{Ty

Gho%oge ERTE T GluyE) gy AT i v-91
G| S
ulw M(m.

It expresses, therefore, the influence of the velocity perturbation in
the "light" fluid region on the acceleratlon pressure drop.
The last two terms in Eq. IV-88 stem from the density perturbation

term in Eq. IV-70, i.e., from

L

5 -
= - ==l _ST.) - 2 Ug 131
o o [(1 dn (e e TR =
Fgon ) ) By Byl e l3) M
At
IV-92
- S ~Te st STy -s(Ty=T) _
oA g SN Gee e (ﬂ)[|_e W
S'J\\ G\ S s-N- &

i

P
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R

o v

The third term in Eq. IV-88, i.e., the f.rst term on the right hand side

of Eq. IV-92 can be exprecsed in terms of Eq. IV-89 thus

- s -ST, - .
Lo A W ¢ o s5-n+ € AL AT Su IV-32
S=N w S §-n Ut

It shows, therefore, the effect of the variation of the velocity in the
"light" {luid region on the density and, therefore, on the acceleration
pressure drop in that region.

The physical meaning of the last term on Eq. IV-88, i.,e., Eq. IV-92
is not as clear as that of the other terms in Eq. IV-88, An insight can

be gained howeve , by considering the upper and lower limits of the

integral
L ¢ .
- 2 el -STy o — -
T _e o ” ( W, )ﬂ- e _J_EL_ } “1‘3' 'D_‘:‘)li) (/3
1 Coe-n W, (3) Uqly) 15 IV-94

At

It is shown in the Appendix C that this integral is bounded by:

"S(t tp __ -St
= G,n( t-Ne ’ Jw ¢ 1.4 £ ea(iye 4 IV-95
= 'y SN w
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which, in view of Eq. IV-89, can be expressed as

.y —S(t5'tl) —_— "Stb
, N dfag 5u.<]’_’4< 9 ot o, Ju,
5- ' -8 U V-96

We note that a simple expression can be obtained by setting Mu/uﬂ})= W\/E;
in Eq. IV-94, this approximaticn results in the following expression for

the integral I,:

=5(Ty-T0)
* _ & Gn(l-Rye g
—4 S-N W

1v-97

S - Z -T
_ o ah ST g

N W

The physical meaning of the integral I, is now clear: it expresses the
, effect of the perturbation of the inlet velocity on the density (see

Eq. IV-69) and, therefore, on the acceleration pressure drop in the

"light" fluid region. This effect is delayed by a delay time equal to

Toor to ( Ty - 1| ) depending on whether we use this upper or lower

bound for the integral I,.

By substituting Eq. IV-89, IV-90, IV-91, IV-93 in Eq. IV-88 and by
expressing the integral I4 in terms of the approximation given by
Eq. IV-97 we obtain for the acceleration pressure drop on the '"light"

fluid region the following expression:

e - o

«§5-

T e g o et
_...x--.m-—wﬁ w pel . R
et o By T re Al l‘w‘m < ’ w —
L s l % F




AP — Am, _ AP gn AP gy,

[{=N) Wia
- S ~5{T3-T)
S LTE VP R\ S
5-f Wi, c- N U,
Iv-98

R .
vt Lie steady state acceleration pressure drop Alg is giveu by
Eq. IV-89.

IV.7.3 The Gravitational Term

The gravitational term in the momentum equation is given by
L

APE‘i = j 1€ A% IV-99
M|

Substituting Eq. IV-78 and retaining only the first order terms of

we obta’n after integration:

- - St
"t T q W, ¢ s
IV-1.0
ol ~u
. ju-ﬂﬁ‘_ ¢ S saunt
, - T.

Us s-n s




where %'l _ST .
I,= ‘1("‘( =) e g {ay =

Mt e “ald
-$Ty 1o
4% 0 a . { _,_u'_‘s/n-\ Ju el
N os-n S Gs)

The physical meaning of the various terms 1s as follows:
We obtaln the steady stace gravitational pressure drop by letting
% = QO in Eq. IV-100, thus in view of the definitions given by

Eq. 1V-36 and IV-75 we have:

T " e \.P l;;: 1 ; Y G’
— -A __—-(. h 22 = ¢ l“‘/\ =
Bhy = 4IET) L g = q () o=

IV-102
= 4 (=R

The second term in Eq. IV-102 can be expressed by meaus of Eq.

IV-1.2 and Eq. 11I-22, thus

-5sT

st
se (1€ ) _ 4U-N eew v g _
e s ! -A)  wiw W

Iv-103

AP“* ulu (Y)\
(I‘X) ] o

TR | g ————

w i SN rv’”"uw:‘*f““_? r
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It expresses, therefore, the effect of space lag vaviation on the

gravitattonal pressure drop.

The third term in Eq, IV-100 can be expressed by means of Eq. IV-39,

/ IV-75 and IV~1U3, thus

T ¢ of 312 n ('JT" S N
U-T) =+ te $-hta = — QM) & 5y
Uy 5-N s S-n 3 Uy
APeq . (u} 1V-104
lAM S-:L

where the mean velocity W.,, is defined by Eq. IV-39. This term then
represents the effect of velocity perturbation in the "light'" fluid
region on the density and therefore on the gravitational pressure drop
in this region.

The physical meaning of the last term in Eq. IV-100 can be ex-
plairned again by expressiug the integral I, in Eq. IV-101 by its upper

and lower bounds (see Appendix C)

]
w
—
~
-~
]
o
Woar
1
a
[\ 8

|
s-n G|G3 s=Nn. u W I1V-105

which in view of Eq. IV-39, iIV-75 and IV-103, can be expressed as
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‘5‘/[3_-5') ~ ( ~35T,
0 0P e o (T, (D By U o g

§=N- a| W

S-N- Wom

IV-106

A simple expression for tke integral I, ~an be chtained by using the same

appreximatiorn which was used in deriving Eq. IV-97. Thus, if we let

U./u‘i(€}: J=/53 in Eq. TV-10lwe obtain after integration the following
appreximaticn n > -5 (Ta-T))
- 9¢, f
[ = o 2 An Uy e Su, —=
i 45 n u,
T - V=107
’P —S(‘CS t‘) +

5-N W

By comparing Eq. IV-107 with Eq. YV-106 it can be seen that 14* has a value

which f£alls between the twec bounds given by Eq. IV-106, The last term in

Eq. IV-100 expresses therefnre, the effect of the inlet velocity perturbation
on cne density (see Eq. IV-79) and on the gravitational pressure drop in
the "light" fluid region, Furthermore, this effect is delayed by a time
deisy equai to T.cr Ty-7,depending on whether we use the upper or lower bourd
for the integral I,,

By substituting Eq. IV-102, IV-103, IV-104 in Eq. IV-100 and by

expressing the integral I, in terms of the intermediate approximation
1, given by Eq. IV-107 we obtain for the gravitaticnal pressure drop

in the "light" fluid region the following expression:
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-5
S N -S(T}‘Tl)
€L bisq gy [N (TR S,
T = 1 — = IV-108
ST U S

where the steady state gravitational presure drop is giver by Eq.
IV-102.

IV.7.4 The Frictional Pressure Drop

The frictional term in the momentum equation is given by

L

A?ls - t Q'\Al dy. IV-109
2D

At

Substituting Eq. IV-78 and IV-27 in Eq. IV-109 and retainirg only the

first order terms in ¢ we obtain after integration the following ex-

. - =57,
pression - R ‘(’/\) -1 st |1-€
EU-R) el e 2 o ew o ee
AP13 = D Cf't R ] 2D ‘ ( S )
- _ ;4_ _Sfb
L fn) Guee S-rRe + IV-110
1) S
- -1t
o HU-R) e}g' Eesl— 5-N+An€ y _ T_g

s-n D )
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wherce the integral 1. is given by

5
L b
- Y 25T _ by
T _ F& _&2 K_\"'_} Tt dw H gy 43
- 2D S BIYTY Uy 3)
' Ait) Tv-111
-sT s
FoGa ¢ ° n Si__/_g.__)nl
1D s-n D s-20 ) ( Y

The physical meaning of the various terms is as follows.
We obtaln the stcady state frictional pressure drop by letting

¢ = 0 in Eq. 1V-11y, thus in view of Eq. LV-35 we can write

17, HED e[ Alli

2 T
> 1v-112

D

LAY G Cuy)

The second term in Eq. 1V-110 can be expressed by means of Eq. IV-112

and Eq., JII-22 thus:

—§ - -
13 (’*G.li ese(l:ﬁ_n)= afy W)
1 S A-R)  Cud IV-113

[t expre ises therefore the effect of the space lag variation on the

frictional pressure drop.

Ihe third term in Eq. Iv-110 can be expressed in terms oI Eq. IV-30
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and Eq. IV-35 thus

i
|l

- ¢
y FUA er«;.zes =R xne 28R ¢

D > LY IV-114

This term expresses therefore the effect of velocity perturbation in the
"light" fiuid region on the frictional pressure drop.

Similarly the fourth term in Eq. IV-110 can be expressed as

-5t e
1 HM\ ka\ ge“ -N+n€ * _ S AP&Q JU%’
5S-n D S S= (U IV-115

In view of Eq. IV-79 this term shows the effect of the velocity
perturbation in the "light'" fluid region on the density perturbation and
therefore on the frictional pressure drop ir this region.

The physical meaning of the last term in Eq. IV-110 can be explained
again by expressing the integral I5 in Eq. IV-111 by its upper and lower

bound (see Appendix C) thus

IV-116
- - =3(TyT) - -ST,
n (’“’lﬂ GU; 14 (ﬂA. < I < _&_ c‘u—/\\ G.e 50\
N W w : -n 2D
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which in view of Eq. IV-115 and IV-35 can be expressed as:

—— — _S(fg‘fn) o -StT
1 AP s Uy p Ju, <I - < S A%} e 55M’ .
S0 (w) @ S en vy

A simple expression for the integral 15 can be also obtained by using the
same approximation that was used in deriving Eq. IV-97 and Eq. IV-107.

Thus, if we letlm/d%3)= M./&; in Eq. IV-111 we obtain after integration

T —S{T -TI)
[ o APy T T gy
Ly = — ‘ IV-118
S"S)' l/l|

The last term in Eq. IV-110 expresses therefcre the effect of the inlet
velocity perturbation on the density (see Eq. IV-79) and therefore on the
frictional pressure drop in the "light'" fluid region. Furthermore this
effect is delayed by a delay time equal to ZL or (ts-zl ) depending on
whether we use the upper or lower bound for the integral.

By substituting Eq, IV-112, IV-113, 1IV-114, IV-115 in Eq, IV-110 and
expressing the ir-egral Ig in terms of the approximation given by
Eq. IV-118 we obtain for the frictional pressure drop in the "light"

fluid region the foliowing expression:
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whe _e the steady state frictional pressure drop £Sg13 is given by
Eq. IV-112,

IV.7.5 The Exit Pressure Drop

We can include the effect of the exit pressure drop in the momentum
equation. For this purpose we shall define by b(. the coefficient for the

exit losses, then the exit pressure drop czn be expressed as
Ty -? AR d L
y~ Ny = v o= e € Uy IV-120

By substituting Eq. IV-69 and Eq. 1IV-27, both evaluated at % = Lq and

by retaining only the first power in ¢ we obtain:

5-Nn Iv-121
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We obtain the steady state exit pressure drop by letting & = v

tn Eq. IV-121 thus
— | —_ .
APy = k. Qs U, — ko G Uy IV-122

Consequently Eq. IV-121 can be expressed as

5 2 AT\;
V3 IV-123
S “o. -5(Tx=T.)
N A?}\‘ 5\“& _ {1 Ai;v e JM‘
¢-N a 3-]‘1 W,

3

The second term in Eq. IV-123 represents the effect of velocity
perturbation in the '"light" fluid region on the exit pressure drop.

Th: last two terms in Eq. IV-122 can be expressed as

- - S(T3‘-c|)
oAty Yy W -
sS-nN U, % IV-124
A
— 3§ €'5
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where we have taken into account Eq. TV-8l. Consequently the last two
terms express the effect of the density perturbation on the exit pressurc

drop.

IV.7.6 The Integratel Momentum Equation

By adding ©q. IV-86, IV-98, IV-108, IV-119 and IV-123 we obtain the

integrated momentum equaticn for the light fluid region thus

-t = A% + A?‘ﬁ —+ Zr?zg, —+—A—i’;\,+

=R dduy  _

dt
B T T I \]57\ +
=AY (1-R) w, VESIRATY o125
é
+ g A?ﬁ 4+ Z\?b& + .A_E + A-P3\17 JUj _.\_ f
Ut U, wy -y ]
__‘__S—E_ %APQ‘ X o) b9 + APZ}, + AE;\, } Jul} . , )
ST W, Un LU o ’
) ) 7. 5y -S(13-T)
b Ca% oy | 4Ry APMS
Z-Nn S\ [ T ﬁ7 t n + Wy (f '
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By addirg the momentum equalions for the "heavy'" and "light'" fluids
we shall obtain the momentum equation for the system whence the characteristic
equation for predicting the onset of unstable flow. This will be done
in the chapter that follows.

IV.8 Comparison With Previous Results

Before we proceed with the derivations of the characteristic
equation, it is of interest to compare the results derived in this chapter
with those reported previously in (49, 50, 51, 53, 55)}. 1In this section
we shall make comparison with the results of {49, 50 and 51) whereas in
the section that follows we shall compare the present results to those
of (53, 55].

It was already discussed in Section I.3 that the assumptions made
in the present ana.ysis as well as the general formulation of the problem
are the same as those reported previously the Wallis and Heasley (50) and
Bouré (51] for bniling, two phase system. It was also noted in Section
1.3 that the present analysis differs from those reported in (49, 50 and
51} in the following respect: 1) the constitutive equation cf ctateis
different and 2) the characteristic equation is different.

The analyses of (49, 50 and 51) were derived for boiling systems,
the pres:nt investigation is applicable to both subcritical and super-
critical pressures. 1t is emphasized here again that neither this in-
vestigation nor those reported in (49, 50 and 51) take into account the
effect of relative velocity between the two phases in the boiling region

at subcritical pressure.* If the effects of the relative velocity are

*The conditions under which the effects of relative velozity can be
reglected are discussed in more detail in (55). !
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to be taken into account then the momentum and the energy equation, i.e.,
Eq, TV-2 and 1V-3 must be modified. Furthermore, a diffusion equation
should be added to the field eguations describing the process. An in-
vestigation along these lines will be reported separately.

1f, in the boiling region, we express the reaction frequency L by
means of Eq. IV-23, then Lhe density given by Eq. IV-65 becomes identical
to that derived first in (49) and to those in {50, 51, 55) using different
approaches. We shall examine now Eq. 1V-66 which can be expressed also

as .

- ...5([~~T;)_5t
T S/ (P SR S

——— —_— —_— — e

-

?L G}ts) S- ek— G}lb| s- Ual3)
Iv-126

wvhence, in view of Eq. IV-65, and IV-3(C, the perturbation can be written

M -8y -(S-JI)H"'T..) -5T,
(x'f -e e e
ey =g M ¢ al _ .
Uql3) (’{. - S ¢-n

—-S’Cb/
By adding and subtracting &€ s we can express this relation as

*F st SSTe st
_ -128
€ty = &L RBn n) =& 7€ (- ) w12
Uqﬂ)l S =N

If we replace now n by Eq. IV-23, then Eq. IV-128 becomes identical
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“g 3 ar tie papev by Wailis arnd Healsey (50) derived usi'g a d:fte-ept
aTPITank,
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We can ‘rsert Eg. IV-6% in Eq IV-126 and express the larter ac

: - ¥
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i oo de-eyry terme which aprear or the vight haud side of g. IV 129

S0 oanyreximated by the eteady states relatiom ) 1,6 by
g _ &
e‘— &1(51 tv-130
15 wzs done in (51) we chtain
ey f_e“ﬂ s_nme'sr‘/;' )‘— e—-sz,.( " )—%ﬂ
Q— B 5115, ! U s(s-n) \\i,m C <-n Uy (3) 1V-131

which 1s cguivalent to £q. 5. Appendix A of Boure‘s report (51).
Apart from the difference in the equations of srate used in this
arslysi1s, the difference between the present tresults and those of (50, 51)

13 in the handling th> momentum equation. In (50) the momentum equation :

e ad e res s o . .

was not integrated along the duct, it was first integrated by Bouré (51). =
indeed, it can be shown, that after some rearrangement, Eq. IV-88, IV-100 and
V-110 can be put in the form of those given in (51). 1In (51) the integration
of the momentum equation lead to a characteristic equation in the form of an

exponential polynomial of the fourth (or higher) order.
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In the present analysis we have introduced various definitions for
the mean, for the average and for the log mean density as well as for the .
cc2%.weg in the "light'" fluid region which enabled us to give physical

interpretation to the various terms in ‘he integrated momentum equation.

1t will be seen in what [vllows that Lhese relations, together with tne

approximaticn used in deriving Eq. 1V-97, IV-1u7 and 1V-118/resu1t in a

characteristic equation given by an exponential polynomial of the third

order. 1t will be seen also in whac follows that these results will

enable us to derive stability criteria and stabili.y maps which,

previously, were pot available in the literature. -

IV.9 The Density Propagation Equation

It is of interest to note an alternate way for determining the density
perturbation.

If we substitute Eq. IV-21 in Eq. IV-19 we obtain:

?_g.. _D_C__-_-_. AL
n Ty )

Iv-132

This equation was called the energy equation in (51) where it was firs.

derived. Several remarks are relevantu here.
We note first tnat Eq. IV-112 predicts the propagation of the

density caused by the source term ()} . A '"void propagation equition"

was forrulated in (53 and 55) in terms of kinematic waves which predicts

the propagation of density perturbations through a two-phase system.
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This void propagation equation takes into acccunt the effect of the
relative velocity between the two nhase as well as the effect of the
non-ucalform velocity and concentration profiles in the two phase mixture,
It can be casily shown that if these effects are neglected the void
propagation equation can be reduced to Eq. 1V-132.

We note also that Eq. IV-132 is of the same form &s the continuity
for a given species in a multicomponent, chemical reaction system. In
chemical kinetics the source term ia Eq. IV-132 is referred to as the
reaction frequency. It is for this reason that in {53, 55} the term
was called the "characteristic frequency."

Finally, we note that Eq. IV-132 is a first order partial differential
equation which can be solved by the standard method used in Sections III-3
and [V-4. Indeed following this procedure, used already in {53 and 55},

one can derive Eq. IV-66 and Eq. IV-68.
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V. The Characteristic Equation

V.1l. The Momentum Equation for the System

The momentum for the "heavy'" fluid is given by Eq. III-33, whereas
/ that for the '"light" fluid is given by Eq. IV-125, By adding these two
equations, we obtain the momentum equation for the system.
We note that if the downstream pressure PA’ 1S constant we can ex-
press the overall pressure drop, i.e., the external pressure drop of the
system as a steady state term and a prescire perturbation caused by the

inlet flow. Thus

—

X
Fooh, = AP + 0%, §u,

0 Uy V-1
where the second term on the right hand side is deteramined by the pump

characterist.cs and has a negative wvalue,

By adding Eq. III-33, Eq. IV-125 and Eq. V-1 we obtain tne integrated

-

momentum equation for the heated duct, thus

—

—
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We obtain the steady state pressure drop for the system by letting

the perturbations go to zero, thus

pu—d t—
——

A-@ — A()o, +Ae1+ Aﬂ,‘ —+ Aflq _‘_Afk‘ﬁ 4+ A?L3+ A?'L\'

By suuvtracting Eq. V-3 from Eq. V-2 we obtain the perturbed form of

the momentum equation, thus

R g

8 e
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The formulaticn is now essentially complete because Eq. V-4 is the
expression which gives the response of the system to the initial flow
pertubation as function of the influence coefficients defined below.
The influence coefficient:;F1 and F, represent the mass of the "heavy"

fluid and of the "light" fluid respectively, thus

and

V-6

&

8- r




The coefficient F3 describes the effect of the inlet fiow variation

on the pressure drops in the "heavy' fluid regioa, thus

w?m N 240, N\,
3 Au, L Qu,

ZA&\ + 20PIL N ?A({')') V-7
A w A,

This coefficient, which is well known from studies of the transient
response of single phase flow systems, has always a positive value.
The ccefficient F, shows the effect of the velocity perturbation in

the "light" fluid region on the pressure drops in that region, thus

— —— —E‘, i
5, _ NP . 2 a0, N zi; V-8
Y <UQ> U3

It is of considerable importance to note that each pressure drop is
differentiated and is weighed therefore by a different velocity. This
important result is a consequence of the integration of the momentum

equation, i.e., of the distributed parzmeter analysis. We note that in

the ''lumped" parameter analysis the three pressure drops in Eq. V-8 would

have been divided by the same velocity, say by the velocity U; at the
exit from the test section as is most often the case for analyses reported
in the literature.

The influence coefficientsF5 and F6 are given by
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It car~ bz seen from Eq., IV-69 and Eq. V-2 that these two coefficients acccunt

for the =f€ert of

fd

ke dersity psrturbation on thte various pressure drore in
the W gghr® f1511 regicr, Note, that the dersity perturbation depends or both
Rq“) and G} . Iwo observatiors are noteworthy. First, the coefficient F5
shows that the effects of the velocicy perturbation on the "light" fluid
region are weighed b~ various velocities. This, again, is a consequence of
the distributed parameter approaclh., Two, the exponential which multiplies
tke ccefficiert F6 indicates that the effects of the inlet perturbation are
delayed by the delay time tS‘tl .

Firally the coefficient F.,, defined by

79
L l-‘b A@;‘ _ qu {
L ad(-xy -k v-i1 ’

o

shows the effect of the space lag perturbation or the acceleration pressure

drop ir. the "light" fluid region. It i~ important to notice here that in

Eq. I1I-33 and Eq. IV-125 all other terms which are differentiated with

resrect to the length cancel each ot .r in the momentum equation for
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the systen. This result could not have been anticipated in a “lumped"
parameter analysis. Indeed, in several studies of boiling systems using the
"lumped" parameter apprcoach these terms were introduced and retained in
the analysis. 1In view of the toregoing)the results and conclusions based
on such formulations can be considered as spurious.

By introducing Eq., V-5 through V-11 in Eq. V-4 the perturbed momentum

equation for the heated duct can be expressed by

CAR- AL S A R )

LAt tode
v-12z
--S[T;'t!) _
L KAy L R oe fn- P adiN =4
S-n S-n

Before deriving the characteristic equation it will be instructive
to express the perturbations in Eq. V-12 in terms of the perturbations of
the inlet flow and of the space lag. Taking into account Eq. IV-30 we can

express Eq. V-12 as

. _ -3(Ty-1,)
{E+F1}%?i +%F5+FH7,(S“| -+ 5;?—;1’-%}’5 —F;C o }(SMI -
| v-13

S-L

1t can be clearly seen from Eq. V-13 that the dynamic response of the

heated channel 2pends upon both the inlet £low perturbation and the
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variation of the space lag. This latter effect is an example of a
fluctuation which occurs inside the system. Tt was discussed in Sections
[I-4 and 1I-7 that such fluctuation have a destabilizing effect. The
destabilizing effect which the space lag variation has in combust . nn
systems and in boiling systems has been already demonstrated in {48, 52)
and {50, 51} amoung others. Equation V-4 shows that, at supercritical
pressures, the space lag variation has a similarly destabilizing effect.
Furthermore, the negative sign in t! rird tecm or: the left hand side of
Eg V-13 shows the destabilizing effect of the inlet velocity perturbation.
We have noted already that tnis effect stems from the density perturbation
in the "light" fluid region.

V.2 The Characteristic Equation

In view of the definitions of the inlet velocity pertuibation and of
the space lag perturbation given by Eq. III-7 and Eq. IV-30 respectively,

we can express Eq. V-13 as

_5115'10
t[s [Fef ]+ Rt Fy + s% Fo— b_J_EI_Fbe i}
<z v-14
a7
|-e 1l e
_an(..___ F =" F /
(e e (o

From this relation we obtain the characteristic equation by noting that
since & # 0 the sum of the terms within the bracket must be equal to

zero, Thus, after multiplying by (v-JL) and after some rearrangement we




obtain the characteristic equation for the heated duct:

- _ _ , _S/T_g‘r.)
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It can be seen that the characceristic equation is a third order polynomial
with two time delays. From the definitions of the influence coefficients

we have the following relations for the various terms which appear in

Eq. V-15.
F/‘f'FL = i Mﬁr = FFX‘ —r<€q>({’A—J V-1lv )
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It was discussed in Sectinn I1-6 that the characteristic equation
predicts the value of § as function cf the pressure terms given by Eq.
V-16 through V-22. In general S is a complex number § = At(&  the real
part gives the amplification coefficient of the particular oscillation
mode, whereas the imaginary part represents the angular irequency ‘3 .
Since the original perturbation of the inlet velocity was assumed to te
of the form §Lh=.£€?I a given oscillating mode will be stable, metastable
or un.table depending on whether the real part of S is less, equal or larger
than zero, i.e., whether Q_<0, a0 or ay 0.

A general study of the flow behaviour entails arn investigation of
conditions leading to aperiodic as well as to perindi. phenomena. The
first pertains to the possibility of flow excursion whereas i"\e second
pertains to the onset of flow oscillations. Following the stardard pro-
cedure we shall study aperiodic phenomena by considering the case of
S = a with@ = 0. Again, following the standard procedure we shall study
periodic phenomena by setting S=tw (a = OIOJ#CD} in _ne characteristic
equacion. Such an approach will enable us to determine the stability
boundary which defines regions of stable and of ostillating behaviour in
a stabili:y map. In the study of the oscillatory phenomena we shall con-
sider separately the case of high subcooling and the case of low subcooling,
The stability problem at intermediate subcoolings will be considered in a

separatc report.
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VI. Excursive Instability

VI.1 Derivation of the Stability Criterion

The study of excursive, i.e., of aperiodic instabilities is con-
duct.d by considering the exponent $ of the velocity perturbation to be
real, i.e., by letting the angular frequency @ of the disturbance be zerc.
It follows then from Eq. V-15 that for small values of § , we have the

following relation:

SR - sAR(-aty) 4 F 4+ F, (1-0T) _

Vi-1
S (] —
—(1+£) Fe (1 —aw) +1+ £)F(1-5Tu)- £, 2T, =
whence after rearrangement:
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o ‘ n.( ) 4§ + vi-2
+{ F;-r 5,(/--024.)- Fe (.'-Jl'CA)-+ Fo - f':;-f?t‘} = 0
which is of the form
» |
sAh+B=o0 vi-3
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Equatior VI-Z predicts the value of the exponent S in terms of the
influence rcoefficienvs, Since rthe inlet ve'ocity perturbatior. is of the
st
form of é” =te , and since the coefficient A* i: positivc and exponent
S is real, Equation VI-3 indicates that the flow will be stable, i.e.,
the disturbance will decrease with time if B* is positive, thus from
Equation VI-2

Py

B= Fy v ﬁ,(l——Q‘Cb) —~Fr(FAT) LR, -F AL >0
VI-4

1f B is negative then Equation VI-3 indicates tnat s will be real

and positive, consequently any flow disturbance will be amplified
with time resulting in flow excursions., Substituting the definiticns
for the influence coefficients givzir by Equaticn V=5 through Equation
V-11 we can express Equation VI-4 in terms of steady state pressure

drops, thus

—
—
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A — 4 T T T T
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VI-5
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This inequality can be cast in 1 compact form by means of the

identities listed below:
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dv W Q1> Y Vi-11
d A€, Ay APy, T
= R + — ( - .n L) v1-12
du‘l h, Wy ’
These relations can be easily derived from the definitions of the steady

state pressure drops. \
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Substituting Eq. VI-6 through V1-12 in Eq. V1-5 we obtain the stability

criterion:

d
o W

d 0

|20 ...

§A¢d|+Ati1+bP +A? +A\\,§+ A?‘+AP1\|}

which can be expressed also in terms of the total mass flow rate W, thus

d_é__f} |déw

V1-14
AW = 0

For boiling systems, this simple criterion was first derived by
Ledinegg (24) using a different approach, it was analyzed further in
{25 through 47} and (51)]. The results of this analysis show that this
"Ledinegg instability'" can occur also at supercritical pressures, The
significance of the stability criterion given by Eq. V1-14, can be best
analyzed by considering the steady state AP-W relation for the heated
duct. This will be done in the section that follows.

V1.2 Significance cf the Stability Criterion

1f, for simplicity, we neglect the effect of the gravitational force
and if we express the steady state pressure drops in the heated duct in
[]

terms of the total mass flow W, and of the total heat input &Q , we have

the following relations:

V1-15
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The total pressure drop for the heated duct is obtained by adding

Eq. V1-15 through V1-19, thus

3
éAP QB——bW +¢Qw— V1-20

where the coefficients a, b and ¢ are given by
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1t should be noted that Eq. V1-20 is applicable to subcritical as
well as to supercritical pressures. By assigning the proper expression
to (;}U’/dt ), which we obtain from the equation of state, we can
differentiate the process of boiling at subcritical pressures from the
process of heat transfer at supercritical pressures. Thus, for boiling

at subcritical pressures we have from Eq. IV-15

AV,
<Q.L) = —”.iL V1-24
di f Ate,

whereas at supercritical pressure: we obtain from Eq. IV-8

(d—v) == R V1-25
Al ip Pe,

When Eq. V1-24 is substituted in Eq. V1-21, V1-22 and V1-23, then Eq. V1-20
becomes the pressure drop relation first derived and discussed by
Schnackernberg (25) and Ledinegg (24) for boiling systems. For super-
critical pressures Eq. V1-20 was derived by the writer(63) (see also

Appendix B).
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Tt can be seen from Eq. V1-20 that whether in boiling at subcritical
pressures or in heating at supercritical pressures the steady state
pressure drop in the heated duct has the same cubic dependence upon the
total mass flow rate. This important conclusion from analysis is indeed
supported by the experimental data reported by Krasiakova and Glusker {18)
for water in forced flow through a circular heated duct., Figure V1-1,
which is reproduced from [lSJ'Shows that in boiling at subcritical
pressures (P = 140 bars) as well as in heating at supercritical pressures
(P = 226 bars) the pressure drop in the heated duct has the same cubic
dependence upon the mass flow rate. It could be anticipated therefore that
the system will have similar dynamic characteristics at these two pressure
levels. This is indeed the case as it will be shown later.

The significance of the stability criterion given by Eq. V1-)4 can be
best analyzed by plotting Eq. V1-20 together with the pump characteristic
on the same graph. Figure V1-2 shows such a plot together with three
possible flow delivery characteristics, i.e., 1) constant pressure drop
delivery system, 2) constant flow rate delivery system and 3) delivery
system specified by the pump characteristics. The intersection of the
pressure drop for the heated duct with the pressure drop curve of the
delivery system determines the operating point of the system. The
stability criterion given by Eq. V1-14 indicates that for some of these
operating points the system may be unstable with respect to some small

flow perturbations. In order to show this we shall consider each flow

delivery system separately.
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vi.7.1l Constant Pressure Drop Supply System

The operating point for a constant pressure drop delivery system are
indicated by points 1, 2 and 3 in Figure V1-Z. The stability criterion
given by Eq. V1-/4 indicates that operaiion at points 1 and 3 will be
stable whereas Lhal aL pcint 2 will be unstable. For example, if a points
1 and 3 the flow is slightly increased the pressure drop of the heated
duct increases, i.e., the ''demand" curve of the system increases above the
"supply" curve of the delivery, consequently the flow will return to its
original value. Similarly, if at points 1 and 3 the flow is decreased
the pressure drop of the delivery will be above that required by the
heated duct resulting in an increased flow and return to the original
operating point. However, the operation at point 2 will be unstable with
respect to either a flow increase or a flow decrease. If the flow is
slightly increased at point 2 the external system supplies more pressure
drop than that required to maintain the flow. Consequently the flow rate
will increase until the new operating point is reached. Similarly, if the
flow is decreased at point 2 more pressure drop is required to maintain
the flow than is being supplied by the delivery system. Consequently
the flow will decrease until the new operating point 3 is reached.

The preceeding considerations can be expressed in a mathematical form
by noting that for a constant pressure drop delivery system Eq. Vi-20

reduces to

d ¢ aP V1-26
— 0
AW kg
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which in view of Eq. V1-20 becomes

- 2
 £AP « W N v Vi-27
L7 2 34 pINTA ¢ R
> a A -+ >0

It can be sezen from Eq. V1-290 that flow stability requires an in-
creasing pressure drop with flow rate. This is indeed th=2 characteristic
of most flow systems. However, the negative term in Eq. 1-27 indicates
that for boiling systems as well as for systems at supercritical nressures
the pressure drop may decrease with flow rate resulting in flow excursion.
Instead of the stability criterion given by Eq. V1-26 one can introduce

the coefficient of stability S, apparently first proposed by Schnackenberg [25]

and defined by

W olier)
S - = (225

which in view of Eq. V1-20 and V1-27 can be expressed as

e by 042
- T m e -+ y | ir
:Sr — 3 2 a’ W a (W') V1-29
b Q - (&jl
— ——— — + —— ——
| a” W v W

where the coefficients a, b and ¢ are given by Eq. V1-21, V1-22 and V1-23,
As observed by Schneckenberg (25) the stability coefficient S, defined

by Eq. V1-28’represents the per cent change in the pressure drop by a 1%

-99.
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variatien i the maes flow rste, It can be seen from Eq. VI-28 and VI-26 that

for stable flow § mus. be positive, thus

Sy o VI-30

Yi.2.o Constant Fiow Delivery Svystem

The operating pcint for a constant flow delivery system is given by the
intersection of the pressure supp.y with pressure demand curves, It can be

ccen from Figere v.~2 that for such a system

JAP&,
dw- | Vi-31 ' )

3l

whence Eq. VI-1a indiranes that for such a4 system no {..w excursions are possible.

Vv1.2,3 Delivery Spe.~-7ied by Pump Characteristics i

The operating < .. for a syster whose flow dull!.. ry is specified by
the characteristics ol -be pump are shown as poirts * . and 6 on Figure VI-2,

Using exectly the same a¢ ,u.ents as those used in < ...ssing a constant pressure

4

ot B e

drop delivery system, it <an L~ -hown that the .. :uing points 4 and 6 are

stable whereas operating point 5 is unstable -vith cespect to small flow

disturbances, At this latter point any flow jerturbation will cause a flow

excursioa te elther poiat 4 or to point 6.




e The Effects of Various Parameters and the Methods for Improving Flow Stability

The effectz which various parameters have on the propensity for flow
excursions can be evaluated by examing Eq. V1-14, V1-21, V1-22, VI-23 and L
Ey. V1-27, 1t can be seen that the variation of any parameter which tends
to increase the value of the coefficient b given by Eq. V1-22 will have 4
destabilizing effect. Consequently, incrs- 7 the value of the exit pressure
drop coefficient kg is destabilizing whereas the flow can be stabilized
by a hign inlet pressure drop, i.e., by appropriatz orificing. In view
of Eq. V1-24 and V1-25 it can be also seen that increasing the system
pressure will have stabilizing efiect whereas a decrease in system pressure
h4s che opposite effect, Furthermore, the flow can be also stabiliz:d by
~hangiag the pump characteristics,

Before closing the discussion of excursive instabilities it will be
instructive to illustrate the destabilizing effect of the compressibility
of the fluid in the heated duct. It was discussed in Section 1,3 that the
instability mechanism which is analyzed in this paper is based on the
effects of time lag and of density variations in the heated duct.

For simplicity we shall consider only the effect of the frictional
pressure drop in a system with zero inlet subcooling, i.e., with Ai‘lz(d
For such a system Eq. III-20 shows that the spac. lag is also zero. The

frictional pressure drop is given by

v1-32

P MGy MWy
A - 2D < ! 1D (Au)

where the mean specific volume V. in the hezted duct is obtained from

Eq. IV-77, thus

Z " P

Ao _<_9.'..>_
C. - G V1-33
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{f we iusert in Eq. V1-3z the expression for the average velocity <hﬁ> given

by Eq. IV-35 and since the space lag is zero. we can express the mean

specific volume VUn. as

e al
Un = Vg + 1 — Vi-34
e
or in view of Eqg. IV-Z1 as
I AT :
Ve = U+ L Lz‘_ ) @ L35 =
T VA w s
whence : )
. ;
UV ) (dv- Q

Since Ey. V1-32 and Eq. V1-35 show that both ZS? and Vp. are

functions of W we can express the stability coefficient defined by

Eq. V1-28 as

ly W Mv\
§ =1+ _“(— )& V1-37

whence from Eq. V1-36 we have

s =1- 1 (F) i
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wh (dv/di) is given by Eq. IV-15 or Eq. IV-8 depending on whether
we are .nterested in the subcritical or in the supercritical region.

It can be seen from Eq. V1-37 and Eq. V1-30 that for a system where
the mean specific volume does not depend on the mass flow rate the flow
will be stable. For such incompressible flow system the ccefficient of
stability S "as a value equal to 2. This is also the maximum value of S
because when the fricition factor f in Eq. V1-32 is a function of the
Reynolds number then Eq. Y1-28 shows that S will have a value less than
two. For example, for laminar flow it will have a value equal to unity.

For a boiling system at subcritical pressures or for a process of
heating at supercritical pressures Eq. V1-38 shows taat the value of S
can become negative because of the compressibility of the fluid. For
such systems Eq..V1-30 shows that the flow may become unstable,

in closing it should be emphasized that the density effect per se,

can lead to excursive flow instabilities, Oscillatory flow instabilities

results from a combined effect of time lag and of density variation. This

will be analyzed in the two chapters that follow.




VII. Oscillatory Instability at Low Subccoling

VI1.l The Characteristic Equation and the Stability Map

In this chapter, and in the following one we shall investigate periodic,
i.e., oscillatory flow phenomena. For this purpose we shall assume that the

exponent S of the inlet velocity perturbation is given by $ ={Wyhkere the

angular frequency &) , is a root ol the characteristic equation, i,e., of Eq. V-15.

In this chapter we shall consider the case of low subcooling, whereas, in the one
that follows we shall consider the case ¢f high subcooling,

For the case of low subcooling the characteristic equetion, i.e., Eq. V-15,
can be simplified by recalling that for low subcooling the time lag Te, given by
Eq. III-19 will be short. Note, that the total transit time Ty-7T, , which also
appears in Eq. V-15 need not be short. This can be seen by coasidering Eq. IV-63,

i.e.,

Aiz.e(-/ic (dt A ] oy ed Wa.
Ty-r, = —f =< | (1= <2 v
v =T e pry P §'+(dtb w-(‘ S )} 1-1

which can be also expressad as:

ﬂ£ - V1iI-2
ts—--a = tb + —(-—7'.—'(?\% l'l" _li‘_. (\_. -;AL')}
or as
A(Ty-T) = T, + W 2
d VII-3
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Consequently, for short a spuce lag 7( , and a short time lag Tp , the transit
time mav be long for sufficiently long ducts and/or for low inlet velocities.

It can be seen from Eq. VII-3 that the effect of time lag will be emall if

__sz<< | VIL-

which for subcritical pressures implies

] VIiI-5
V. At
av, AV A )
’Ue ALFQ
whereas, at supercritical pressure this irequality implies:
- ' “‘

nNT, = a

? Cp ’\)(,

o e been

Houzhiok

When the time lag N\ is short, then in Eq. V-15 the exponential term

which contains Th, can be expanded and the characteristic equation reduces

to
SRR -Fa AT} s§ Fyor Fy= L {FAF) =T ( Fy+Fy - F,_)} —
' VII-7 {
- - —S(t_s"-cl) i

This equation can be cast in a dimensionless form by defining a dimensionless

exponent

% o- s (Ty-t) = s4T .
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using this new variable, Eq. VII-7 can be expressed as

v ~%

where the dimensionless coefficients a, b and ¢ are given by:

— — VII-10

G 4T FyeFy -TLIA1A)- 1T (Fy+F —LF) }

= F:"'Fl' F T,
VII-11
ny - - 1Ty (F + EFqe F
b =-JLA‘C"£ Fy tFy —Fr v+ Fqo= Fs) }
Fth - R ats

VII-12

C - =R AZL{. F%
Fl-f FL "F‘_ .n-tg

and where the total transit time: AT is given by Eq. VII-7,. The coefficients

a, b and c can be expressed also in terms of the pressure drops, thus

q = AT 24P, . 209, Tt | AP +24?13\L LAR%) yr1-13
M(—%MQ(I-JITA) “, W Au T g, () “y

— r— iy

——.Sltb[ 4@, . A?}; . Aobq + A?av]t{

N-T) {ugy U 728

n - — T .
b - - _fLA-C §2A?o| v IAPn, + ’DAPQ + APZ} _ Ap_bi + APS“

Met My(1- 9T 0 Dy <wgd b Wy VII-14
\ P X ) o
_sm(ﬂ_?i_ , 28 sk A% ]}
Jll(—X) <\‘1> W V‘}
C = nat” g A—P:‘ _\_ AT’;. + s, + ;-P—;w S
MMy (1= AT Y wi W w VII-15
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Equation VII-9 is a second order exponential polynomial with one time
delay. Stability maps for such polynomials have been recently presented by
Bhatt and Hsu [65, 64). One such map is shown in Figure VII-1, it is in
the c-b plane with the coefficient "a" as a parameter. The lines for which
the coefficient "a'" is constant are stability boundary curves. For example,
for given values of the coefficients '"b'" and "a", the stable region of variation
for the coefficient '"c¢'" is shown by the line segment AB. The segment CD is another
stable range for constant values of "b" and of "a'".

Figure VII-1 is the stability map which can be used to differentiate
the regions of stable operation from the region of unstable, i.2., of oscillatory
flow in the heated duct. However, because of the complicated nature of the
coefficients "a'", "b", and "c¢" which appear on tihis map, it is rather difficult
to discuss ard analyze the effects of the various parame*ers, It is desirable,
therefore, to simplify the characteristic equation in order to obtain simple

stability criteria., This will be done in the section that follows by neglecting

the inertia terms in Eq, VII-7.

VII.2 Stability Criterion for the Case of Small Inertia

VIi.2 The Characteristic wyuation

If we neglect the imertia terms F, and F, in Eq. VII-7, the

characteristic equation reduces to its simplest form given by

-5aT
S+A+Be =0 VII-16

where the coefficients A and B are given by

VII-17

4 - _ﬂg Futfy=Fe - N (R 1 Fy-Fr) 1]

F}*’ F\l-ﬂt;,( Fy= F_,)
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and F{.

F}‘f F\’—ﬂth (F\‘—[»F1) VII-18

It is important to note that a characteristic equation of the form of
a first order exponential polynomial with one time delay describes the onset
of "chugging" combustion instabilities as shown by Crocco and Ckeng EﬁS].
Since Eq. VII-16 is of such a form, we can use the results of Crocco and Cheng (48]
to analyze the flow stability in this problem. The difference between the present
problem and that of combustion is the physical meaning of the coefficients A and B.
In this problem they depend on various pressure drops in the system which were
obtained from the momentum equation, In the combustion problem the :oefficients
are obtained from the continuity equation and depend, among others, on the process
of combustion,

We note also that the results of Stenning [62] can be expressed in terms
of a characteristic equation of the form of a first order cxponential polynomial
with one time delay. However, since Stenning [62] did not formulate his analysis
of boiling instabilities in terms of the momentum equation,* the coefficients in

his characteristic equations do not depend upon the pressure drops.

VII.2.2 Unconditional Flow Stability

It was shown by Crocco and Cheng (487 that no matter what the value of
the time delay AT may be the flow will be unconditionally stable if the co-

efficients A and B in Eq, VII-16 satisfy the following inequality

A S I VII-1Y

B

* The problem was formulated in terms of the continuity and of the energy equation.
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Because of its importance, we shall define this ratio as the Stability Number Ns.

In view of Eq. VII-17 and VII-18, it can be expressed as

N5 - FB*FV~F¢,_HZL(F_‘,1F7—/—-§—) 7 | VII-20

Fe

This stability criterion can be put also in the form of
R +R-F-nl(R+tR-~F)-F >o VIT-21

whence upon inserting the values for the influence coefficients in Eq. VII~-27

we obtain the inequality which must be satisfied for unconditional flow stability,

thus

208, 4R 94@,‘ _
U u, Quw )
VII-22

— _—

_‘3&5( W _”*-fa( G.) Asv( '7')
a, |'27».) o, I*K T A I‘”'u——"

—ﬂtb( XA + A0, A?Lj + A—?’”>>O

n({-R) ) - 2

e wnioe B in am e i

This criterion clearly indicates the destabilizing effect of the pressure drops
in the "light" fluid region and the stabilizing effect of the pressure drops
in the "heavy" fluid region.

For once-through systems, whken the acceleration and the gravitational

terms can be neglected, Eq. VI.-22 reduces to

26-;:\ N ZEVL -‘_}ZFL. _ A‘?;.)(I__C‘l _ A'}y(-ﬂ)_
s " Du, “ (“'h) G l?, VIiI-23
A, A6
H —_ _ﬂ_‘{'b 22 + 3y
i ) [ Cugd Wy ]>O -109-
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1{ we now approximate <Uﬁ> by My we ran express Eq. VII-23 as

2, + 247, N A Ratdhy  Uy-b 0T (aFs TA—?:V>>\)
3 oy U W Uy U3

VII-24

Defining by A ?‘ the sum of the pressure drops in ihe "neavy" fluaid region.

e

AP e APy o AP
AP = Afo, T g VII-25

and by £>?3 the sum of the frictional and of the esit pressure drops in the

"light” fluid region

oem—

A?é - A?}; -+ AP;V VII-26

we can express Eq. VIL-24 as

> ™ VII-27
z'f—‘?(' u) - .Q--CL _‘_E‘L_ > ' /
A?‘a ix;"c“l UB—U'
whence
246w e (4-7) Ak W VII-28
AP, A U-E) n(4-7)

Inserting now the expressions for the characileristic reac:ion frequency'J]_,

for the time lag L, , given by Eq. IV-23 and III-19, respectively, we obtain

ZA_;(. (_di) Ao U—. [l‘f‘(d‘r\qs (('X)] _ l‘d-: epA(A(‘.” >l VII-29

I3, \dvigy (-F) di/ A w I-= 4%
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This irequality ca.: be ezpressed also in terms of (he total mass flow rate aud

ot the total heat flow Q . Thus

280 (diy 1 W dr) 8 (| Wein]_ Waly
5. v ) ¢ g (- M_%,,_L_,,)[‘*( ( )|

—vJ

—_ )I v
dl Iar G ; watu ViI-30
: Q(I LIS )

?

(>

4

Again, we differentiate the process of boiling at subcritiral pressure from the
process of heating at supercritical piessures by using th: appropriate equation

cf state, thus at subcritical jpiessure we use Eq, IV-15, i.e.,

(_d_ _ AV
: = ; VIii-31
d b ¢¢q

whereas at supercritical pressures we uce Eq. IV-8, i.e.,.
N 2 !

W
(ﬁ_‘:) — K VII-32
di p ? Cp

The implication ¢of Eq, VII-30 will be discussed in Section VLT,

VII.2.3 Conditional Stability

Fo .lowing again Crocco and Cheng [48-]we can determine the relation
between the critical transit time AT, and the critical frequencies < corresponcing
to neutral oscillations. Such a relation is obtained by separating the real and

imaginary parts of Ey, VII-16, thus

Lo + A+ B tos W AT = ¢ $v weat =0 VII-33

whence w
S$in WedT, = - < VII-3

S8 -

B




and A

UYES - -
WedZo = R VIi-35

where the coefiicicent B)given by Eq. VII-lé}can be expreoused in terms of the

pressure drops thus

B = nr
- T _ VII-36
f‘} -qu—.n.Z(, (/:q'*;;)
where
- A? f A?z _-?_
P GRS LU R
u, U, vy &, VII-37
and

- 200 2o DAL o, 7 .
Fot b -nt( R /)= 222 0 2 o [P 4 l__éﬁ3+2a@v

+

c Lo s -
® 9, Vou, ! Uy Mg g
v 7 o _~
S - L 2423 LB ]
Uen QA Y 13!
VIi-38

The stability number Ns, given by Eq. VII-20 ~ecomes when expressed in

t2rms of the pressure drops:

V1i-39
. 2000 . -’.:'\’u. + ’]A?:,! + i’ akR, _ A?u, . A-?S\i ('*-nfs)‘ QT AF,
N ) “, u, (hi> W “b ﬂll‘X)
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The critical frequency W¢, is obtained from Equation ViI-34 and Equation

VII-35, thus

wc — \) -BL_ A“/ VIL-40

whereas, the critical transit time AT is given by Eq. VII-35 and Eq. VII-40,
thus

((3~Il)c — AT, = ————l % Tr"‘ Lo::'{é_)l, VIT-41

As discussed by Crocco and Cheng [48\ if the inequality given by

Eq. VII-19 is not satisfied, then stability is still possible if the angular
frequency of the perturbation and the transit time satisfy the following

inequalities

> w VII-42

and

AT < 4T, _

The system is intrinsically unstable if the directions of the inequalities

are reversed, Furthernore, when

AT = AT, ‘ VII-44

ther Eq. VII-16 nas an oscillatory solution with an angular frequency &J, .
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The preceding results can be plotted against the stability number N ,
S
given by Eq. VII-20, i.c., by Eq. VII-34, For this purpose we shall define

also the period of the oscillation by

210
T = VII-45
e

We can form now the ratio of the critical transit time to the period
and express it as function of the stability number Ns’ thus from Eq. VII-45

and Eq. VII-41 we obtain

AT e (G-T, I -
e _ Db 1 L Lo N r1t6
T™ 2T L PAT

The critical angular frequency can be also expressed as functions of

Ns’ thus from Eq., VII-40,

Lo

P

= {|=-N- VII-47

Similarly, by means of Eq. VII-4l1 we can express the critical transit

time as function of Ns’ thus

AZ 1 ! -1
< - ————-—%-7!-— 700.) N;} VII-48

2T|R| v}—‘fﬁt

Eq. VII-48, VII-47, and VII-46 are plotted versus the stability number Ns, in Figure

VII-2., The significance of this map is discussed in the following section.
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V11,3 _Effects of Various Parameters and Methods for Improving Flow Stability

The effects which various parameters have on the propensity to induce flow
oscillation at low subcooling can be evaluated by examining Eq. VII-22 or
Eq. VII-30. 1t can be seen that the variation of any parameter that tends to
decrease the positive value of the left hand side of these equations bas a
destabilizing effect. For example, increasing the various pressure drop terms
in the "1light'" fluid region has a destabilizing effect. Similarly, an increase
of subcooling tends to destabilize the flow. Vice versa, an increase of the
inlet pressure drop or a change of the pump characteristics will stabilize the
flow,

Although the preceding results have not yet been tested against experimental
data, the form of the simplified stability criterion given by Eq, VII-29, seems
to be correct, This statement is based on a comparison of Eq. VII-29 with the
empirical criterion for predicting boiling instabilities recently proposed by
Serov and Smiraov (66)., In the nomenclature of this paper, their criterion is

given by

APo, 4+ 0P S 4 9 (1-A) sV } - L{ 0, V‘Q du%/ar} VII-49
A—?‘L)+§h D ‘\7, Alf“( o

where a and b are two constants to be determined from experiments, D is the
diameter of the pipe; Vo is the volume occupied by the steam and (d%/dP) is
the variation of the specific volume of the steam with pressure, Consequently,
the second term on the right hand side of Eq. VII-49 represents the effect of
compressibility. This effect was neglected in the present analysis.

It was reported by Serov and Smirnov {66] that Eq. VII-49 was successful

in correlating data and predicting the onset of flow instabilities in boiling of

water at pressure of 30, 50, 70 and 100 atmospheres,

o —— 1.
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If we neglect the effects of compressibility in Eq, VII-49 and compare it

to Eq. VII-29 and VII-31, it can be seen that Eq. VII-49 is incorporated in
Eq. VII-29. We note also that this latter =quation is a simplified form

of Eq. VII-23; i.e. of Eq. VII-9 which are therefore more general and
complete,

Further experimental evidence that gives support to the form of
Eq. IV-29 is shown on Figure VII-3 which is reproduced from the paper
by Platt and Wood ZEQ7~ It can be seen from this figure that either
increasing the power input and/or decreasing the mass flow rate has a
destabilizing effect. The same results are predicted by Eq., IV-29,

Perhaps the result of greatest significance revealed in the present
investigation is the similarity between the characteristic equations for
predicting "chugging'" combustion oscillations and the characteristic
equation for predicting low frequency flow oscillations in heated ducts
at near critical and at super-critical pressures, Since it is well
known (see for example[Aé) ) that "chugging" combustion instabilities can
be stabilized by an appropriate sexrvo-control mechanism, the resulte of
this investigation indicate that low frequency flow oscillation at near
critical and at supercritical pressures may be also stabilized. This
important conclusion is demonstrated on Figure VII-2 which shows also the
effect of various parameters on the propensity toward oscillatory flow,

It can be seen on Figure VII-2 that even when the stability number
Ng is less than unity, the flow may be stable if the frequency of the
inlet perturbation is higher than the critical fréquency QJL . Similarly,
the flow can be stable if the total transit time is shorter than the critical
one. The values of &/ and of ("L',-t,)‘z AT, are plotted in Figure VIII-2
in terms of the stability number Ng and of the coefficient B given by

Eq. VII-39 Eq. VII-36 respectively.
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The effects which the variations of the various parameters have on
the flow stability can be evaluated from Figure VII-2 by considering
whether the variation results in an increase of the stable region. For
example, it can be seen from Figure VII-2 that for a constant value of Ng
an increase of the delay time has a destabilizing effect because for
sufficiently long delays A will become larger than ATG. We note that
this quantitative conclucion is in agreement with the qualitative des-
cription of the destabilizing effect of the time del iy presented in Section
II-4, 1t can be also seen from Figure VII-2 that increasing the frequency
of the inlet perturbacion at a constant value of Ng, has a stabilizing
eftect because for sufficiently high frequency ¢ will become larger
than &), . Furthermore, Figure VII-2 shows that an unstable flow; i.e.,

a flow for which wé&w, and 8Ty 8Tg can be stabilized by increasing the
value of the stability number Ng.

We close this section by observing that the foregoing conclusions
and results are new and have not yet been verified against experimental

data. If confirmed, then the results of this study provides a method

el A ¢

whereby stable operation can be insured on an intrinsically unstable

region,
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VIII. _Oscillatory Instability at High Subcooling

VIII.l1 _The Characteristic Equation and the Stability Criterion

We shall con:ider now the case of high inlet subcooling which implies a
long time lag Tiand a long space lag Ao For such system Eq, VII-3 indicates
that the transit time and the time lag will be of the same order of magnitude,

Since both time delays are long, we shall neglect the exponential terms in the

characteristic equation given by Eq, V-15, which reduces then to

T

S %FI*FL]] + S %FS"' Fy - ﬂ-(F\"’Fz.)}— —Q% F‘S + FL,—F‘.} -

VIII-i
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where the sums of the inflirence coefficients are related to the bressure drops

by the following relations
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It can be seen that the characteristic equation is a cubic equation of the

form of

VIII-7
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where the coefficient a, b, ¢ and d are given by the corresponding terms ot !
Eq. VII-2,
The protlem of determining the conditions for neutral stability is solved

again by substituting S = L in Eq. VI1-7.

Thus VIii-8




whence upon separating the real and the imaginary parts we have

- C
C\J = - — 7
c VIII-9

and

VIII-10

Consequently for oscillations to be possible the coefficients a,b,c and

d in Eq. VII-9 and Eq. VII-10 must satisfy the following relation:

~ VIII-11

< o d
G k a

whence, the values of the influence coefficients must be such as to satisfy the

following expression:

Fy+F, -F--(RtFy - 1R y tFy= Fr
2 (FtR) FyrFy-n(Ftf)-aF,

ViiT-12 H

It can be seen from Eq. VIII-4 and Eq. VIII-6 that, unless the effects
of inertia or of gravity become dominant, the right hand side of Eq. VIII-12

is a pocsitive quantity. Consequently, Eq. VIII~12 indicates that

oscillation can occur only if

FytFy—F = (FR+F7-97) Lo
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The re-fore, the flow will be stable if

r

gt f= _ _
s 7T e "/F/T"7'n£'-)>g VILI-14

In view of Eq. VIII-5, this inequality can be expressed also as:
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—= - — - N
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For oscillatory flow, Eq. VIII-13 and Eq. VIII-9 indicate that the angular

trequency will be given by

VIII-16

which, when expressed jn terms of the influence coefficients, becomes

[
l' F\/‘Trv‘n F;_‘ (F;-fr\,- F}) /“
L (F+F) VIII-17

W =

It should be noted, again, that the values of these influence coefficients should

satisfy Eq. VIIT-16, i.e. Eq. VIII-12.
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VI1T.2 Effects of Various Parameters and Methods for Improving Flow Stability

The effects of the various parameters can be evaluated by examiring the

1nequality given by Eq. VIII-15., It can be seen that any variation which terds

to increase the value of the left hand side of this equation will have a stubilizirg
c-fect, Thus, the flow can be stabilizzd by increaring the pressure drops in
the "heavy" fluid region, whereas it will be destabilized by increasing the —
tressure drops in the "light! fluid region.
The effect of subcooling can be evaluated by comparing Eq. VILI-14 and

Eq. VIZI-15 with Eq. VII-20 ard Eq. VII-39. Since the velocities in the "light!

I

fiuid regicn are tigher than the inlet velocity it car be seen from such a

comparison that the inequality applicable at nigh subcoclings, i.e. Eq. VITI-14

is less restrictive than that corresponding to low subcoolings, i.e., than

Eq. VII-20. Consequently, the flow is more stable at high subcoolings.

However, since Eq. VII-20 indicates also that an increase 1in subcool’ 7 destabilizes
the flow, we conclude that tnis destabilizing effect muct go throvugh a maximum

at intermediate subcoolings, For boiling systems, this conclusion is in agree-
ment with che experimental results of Gouse (67) who was apparently the first

to notice this effect, At super critical pressures, experimental data, which

could be '1sed to test this conclusion, are not yet available.
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IX, DISCUSSION

The instability mechanism investigated in this paper was based on the
destabilizing effects of time lags and of density variations in the heated
duct,* 1t was shown that, in the near critical and in the supercritical
region, these destabilizing effects can induce flow excursions as well as
flow osciliations,

The characteristic eguation, i.e., Eq. V-15, which predicts the onset
of thesc instabilities is given by a third order exponentiual polynomial
with twc time delays. Because of its complex nature this equation was nct
solved at this time. Instead, simplified stabil:tv criteria were sought
and derived by assuming that the inlet subcooling was either low or high,
This apprcach seemed preferable for several reasons, .

Firsc, the simple stability criteria are more imstructive and helpful
for gaining an understanding cf the essential nature of the instability.

Two, the result shows that the dominance of a particular parameter re-
sults in a particular angular frequency of oscillations (see Eq. VII-40 and
VIII-17). Consequently, the cause of instability cen be determined from a é

trace of the flow oscillation.

H
g
*Qther mechanisms which may iaduce flow oscillation were discussed in 3
Section 1I-7.
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Finally, simplified stability criteria such as {q. VI-20, VII-22,
VII-42 and VIII-15 are more amenable te a qualitative study of the effects
which variations of the various parameters may have on inducing or on pre-
ventirg flow excursions and/cr flow oscillations. 1Indeed, only if the
results from such a study are in agreement with experimental observations,

a Adetailed quantitative solution of the more complicated characteristic
equation can be justified.

It was discussed in Sections VI-2, VII-3 and VIIT-2 that the pre-
dictions based on the simplified stability criteria are indeed in qualitative
agreement with the experimental data. This agreement warrants therefore a
more complete study of the characteristic equation together with a quantita-
tive comparison with the experimental data.

Last but not least the simple criteria are most useful in indicating
the improvements and changes ir the design or in the operation of the system
which would insure stable flow. Several such improvements were discussed
in Sections VI-2, VII-3 and VIII-2. It was noted there that the results of
this study indicate that low frequency thermally induced flow oscillations
in the near critical and in the supercritical pressure region, could be

stabilized by an appropriate servo-control mechanism. Whether this important

conclusion is indeed correct remains to be shown by future experiments.
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Appendix A

The Near-Critical Thermodynamic Region

The success of an investigation concerned with predicting or in-
terpreting the behaviour of a thermo-dydraulic system depends on (‘e
availability and on the accuracy of data giving the values of thermouvnamic
and transport properties of the fluid in the region of interest. It is
the purpose of this appendix to summarize, briefly, the status of present
understanding of thermodynamic phenomena thai take place in a region near
the critical thermodynamic 7~ =t. For additional discussion, the reader
is referred to the extensive tzevicws by R ce (Al) and by Hammell (A2).

Consider a fluid at a pressure slightly above the critical pressure
flowing through a heat exchanger. If the temperatu-e of the fluid at the
entrance is considerably below the critical temperature, i.e., T << Tc’ the
fluid will have a density close to that of a liquid whereas at the exit,
ir the fluid tempe-ature is considerably above Tc’ the density will ap-
proximate that of a perfect gas. Consequently, in passing through the
heat exchanger the fluid will undergo a change of properties from a. liquid-
like fluid at the entrance to a gas-like fluid at the exit. Since the
properties of the fluid will affect the performance of the system is
becomes necessary first to examine the nature of this change and then to
express it quantitatively.

At subcritical pressures the presence oir two phases is distinguished
by a difference in density and by the existence »f an interface between
the phases. At supercritical pressures such a distinction cannot be made

because at these pressures as well as at the critical one the interface,
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the beat of vaporizaticn. as well as the surfdace encrgy, all vaaish.

There is nc general agreement as to the structure cf the medium and
of the mechanism cof ph se transition in the critical and in the supercritical
regicn., Different explanatiouns and descriptioas are advanced by different
authosrs.

Some autiiors like Rosen {A3) and Semenchenkc ‘A4) analyze t'.e thermo-
dyramic characterisrics of a medium in the supercritical region by assuming
an eguatica of state like che Van der Waais' or the Dieterici equations,

Hirschfelder, Curtis and Fird (A5, describe the fluid in the neighbor-
hcod of the critical point as consisting of a large number of clusters cf
molecules of variocus sizes. The system can be idealized by assuming that
the density can te described by a distribution function which has for itr
two limits the densities of the two phases. The fluctuation in density,
which can be expected from the theory of fluctuations, tecomes very large
in the vicinity of the critical point. These large fluctuations and the
fermation of molecular clusters in the neighborhood of this point result

in a large increase of the specific heat at constant volume.

e R et et e

Mayer and co-vorkers (A6) propose a thoory of condensation based on
t’:.e cluster thecry ct imperfect gases frowm which they predict the existence
of an anomalous region atove the temperature of the usually observed critical
point. This region extends up to the highest isotherm for which (7?0 P/?)V)T,

kas anywhere a zero value. In this region, isotherms exist having no vari-

ation in pressure over a finite density range, but having at all densities
continuoucr derivatives with respect to pressure. Various aspects of this
theory are discussed further in (AS).
. ,‘
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A great number of authors distinguish two phases in the supercritical
region: a heavy, liquid-like phase and a light, gas-like phase. The
difference between their results stems from the different approaches used
to locate the boundary between the twc phases and from the different
descriptions of the characteristics of the phase transition.

In a precceding section we have discussed alrcady Goldman's (A7-A8)
descriptions of the supercritical region and of the similarity between the
heat transfer and flow processes at supercritical pressure and those that
take place at subcritical pressure -uring the process of boiling. However,
Goldman did not formulate, quantitatively, the problem nor did he say how
and where to locate the boundary or the region between the liquid-like and
the gas-like phase.

Following Goldman, Hendricks et al (A9) consider "boiling-like"
phenomer at supercritical pressures and, in analogy with boiling, they

introduce a specific volume for the fluid of the form cf Eq. Al,

’\’M=

S

X
o R AEA -

-

In place of the quality they introduce a weighting function for the heavy
and light species. However, no reference is made in their paper as to how

to determine, quantitatively, this distribution function.

In numerous textbooks (A-10) among others, the boundary between the

liquid and the gas in the supercritical region is taken to be the critical
isotherm. Other authors like Thiesen (A-11), Trautz and Ader (A-12)
among others take the critical isochor for this boundary and consider it as

the extension of the saturation line into the supercritical region.
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In the subcritical region various thermodynamic properties such
as the specific heat, the compressibility, the coefficient of thermal ex-
pansion and others change discontinuously or reach a maximum value at the
coexistence, i.e., the saturation line. This line can be therefore looked
upon as the locus of points for these disccntinaities or maxima. Conse-
quently, numerous authors consider the extension of the saturation line
into the supercritical region to be the line which is the locus of points

where the therrmodynamic properties listed below reach a maximum:

. c 2
/)21 =( hDPR) = fD A% =0 (4-2)
T OP 0 f»Tz T

T
2,
(');J =(___c2) =0 (A-3)
T P 2T Jp
2,
(2 ;)= 0 (A-4)
)

() ), -

Several authors (A-13 - A-17) assume that one single line represents
the locus of points of all these maxima. This is indeed the case for sub-
critical pressure where the ssturation line is the locus for all discontinuities.

However, the experiments of Kaganer (A-18) ard of Sirota and co-workers {(A-19)

-132-

*wmg




show that this is not the case but that fcr a given supercritical pressure
different thermodynamic properties reach a maximum value at different
temperatures. Thus, {or each of the thermodynamic propert.as, i.e.,
specific heat Cp’ the coefficient of thermal expansion, etc., thecre is a
different line which represents the locus of the maxima. This szises the
question which of these lines can be regarded to be the extension of the
saturation line in the snpercritical region, i.e., which of these lines can
be considered as the boundary between the ligr'id-like and the gas-like
phase.

Plank (A-20) and Semerch.:: (A-21) consider the line along which

02
<_—%;_§) =0 (A-7)

T
to be the extension of the saturation line in the supercritical region. N
Eucken (A-13), however, takes the curve represented by Eq. A-2 for this
exteusion; whereas numerous authors (A-8, A-9, A-22 - A-25) take Eq. A-3.

Of particular interest to the analysis of tuis paper are the results

B S TR

reported in (A-14, A-17, A-19 and A-16) which wiil be therefore discussed
in more detail.

Sirota and co-workers (A-19) discuss the transition phenomena at sub-
critical and supercritical pressures in terms of the Frenkei's theory of
heterogeneous fluctuations (A-14, A-26). According to this theory in any
gas at subcritical temperature heterogeneous fluctuations result in the

formation of molecular complexes which can be regarded as finely dispersed
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auclei of a phare within a homogeneous phase. In approaching the saturation
line the fluctuations increase and "micro-heterogeneities' appear in the
macroscopic, hcmogenecus phace. This marers the beginning of the "pre-transi-
tion region' which is characterized by the fact that varlous thcrmodynamic
properties exhibit variations which pecome mwore pronounced as the saturacioun
line is approached. This accouncs for the anomalous effects of Lhe prouper-
ties in the vicinity of the saturation line. At the satvratjon line the
preperties change in a discontinuous fashion which is a characteristic of

rhase rransitions of the first order. #s the pressure is increased the

effect of heterogeneous fluctuations increases whereas tbe effoct of phase
change, i.e., of the discontinuous change of properties becomes less
important and disappears at and above the criticezl point. Since the change
of phase at subcritical pressure is characterized by an obsorption of energy
and an expansion of volume the transition at supercritical pressure should
be characterized by the maximum values of cp and of the thzrmal expansion,
i.e., of ( PD\U’FBT)p. See Figures A-1 and A-2 which show these properties
for oxygen at supercritical pressures. However, the authors of (A-19) show
from experiments that at a given pressure the ~wo maxima do not occur at

the same temperature. The values of the mixima for Cp are correlated by

o "% 9.05
-——mar E . +1.30 (A-8)
R P
7 -1
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which is valid for non-polar liquids when P/PCrit 1.5. In the above

equacion, R is the gas constant whereas c is the specific heat for an
g
ideal gas. This equation shows that the value of the maximum Cp decreases

as the pressure is incrcased. The temperatures where these maxima occur

were correlated by

= oyt te, P
-ric W;FLt ? Tlfit (4%

This temperature, denoted here by Tpc’ is often referred to in the litera-

ture as either the pseudo-critical temperature or the transposed critical

temperature.

Both Sirota (A-19) and Kaganer (A-18) chow that the locus of the maxi-
mum values of cp along isobars, i.e., Eq. A-3, is the extension of the sat-
uration line in the supercritical region.

Urbakh (A-17) also considers the effect of heterogeneous fluctuations
at subcritical and supercritical pressures. He shows that as the temperature
is increased and the surface tension decreases the heterogeneous fluctuations
increase and reach a maximum at the critical point. The location of the
critical point depends on the surface tension; moreover, it can be changed
by introducing surface active agents. The critical point divides two regions
which can be distinpguished by the nature of the phase transition. At sub-
critical pressure the transitinn is character’zed by the discontinuities
of the properties and by the presence of a macroscopic second phase within
the originally homogeneous phase. At supercritical pressures the seccnd
phase is finely dispcrsed in the form of clusters. Furtheimore, in this
region the properties do not change discontinucusly but vary in a continuous
way. At subcritical pressures the effect of heterogeneous fluctuations

becomes evident in the "pretransition region'" as a variation of properties
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in the vicinity of the saturation line. This is shown in Figure A-3 which
is the volumre-temperature plane for oxygen. At a subcritical pressure,
say at Pr = 0.9, the line 1' - 2' is the phase transition of the first
crder occurring at a constant temperature. The effect and magnitude of
the fiuctuation in specific volume in the two pre-transition regions is
shown as the lines 1 - 1' and 2 - 2'. The fluctuation 1 ~ 1' is caused by the
forraticn of vaper nuclei in the pre-transition region of the liquid.
Similarly, 2 - 2' are the fluctuations caused by the formation of liquid
nuclei in the pre-transition region of the gas. 1t can be seen from this
Figure that at lcw pressures in the subcritical region the effect of
fluctuation is negligitle when compaced to the phase transition of the
first order. For example, at Pr = 0.5, they are almost absent. Increas-
ing the pressu - increases the effect of heterogeneous fluctuations which
reaci a maximum at the critical point. At this noint and above it}the
phase transition of the first order vanishes so that only the effect of
hetercgeneous fluctuations remains. Urbakh notes further than with the
phase transition and the fluctuations are associated energy requirements

A

which can be determined from the T - s or v - s diagrams shown on Figurec A-4

b v, bk s

and A-5. At low pressure the only energy required is heat of vaporization

for the phase transition of the first order, thus

hfg =T (sz' - sl') (a-10)

However, as the pressure is increased the energy associated with the
fluctuation becomes important. At supercritical pressure it is the only
which remains, and it can be determined either from Figure A-4 or A-5,

thus

AL =T (s, - 5 (A~11)
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Frenkel (A-14, A-26) considers two variations: a transition of the
first order at subcritical pressure and a transition of the second order at
supercritical pressure. The first, characterized by discontinuities of

properties, is described by Clausius-Clapeyron's equation:

e . (A-12)

and takes place at a constant temperature To. The phase transition of

the second order takes place over a terp:rature interval A T = T2 - Tl’

in which the properties change continucusly. In this temperature interval -
both ch and ("bv/r)‘l‘)p reach a maximum. FiguresAl and A2 show these varia-

tiors for oxygen at three supercritical pressures. As a generalization

of the transition of the first order Frenkel formulates the equivalent

energy of transition for the second order transition, thus

AL =T (s, s) = (2 A ., dT (A-13)

where this the temperature corresponding to the peak of cp and Acp is
the value of cp above the '"mormal" wvalue, i.e., above the dashed line on

Figure 1. Similarly, the change of volume is given by

T
1 P

Vo T V1 T l 2 (;.2—") dT (A-14)
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Eq. A-12 and Eq. A-14 represent the additional increase of volume and the
additional heat absorbed in going from the liquia-like statz to the gas-

like state at constant pressure. In place of Clausius Clapeyron's equaticn
Frenkel uses the equation derived by Ehrenfest (A-27) to describe transiticns
of the second order at the ''lambda point' of helium and at the '"Curie point'

of feromagnetic metals, thus

ac,
et (33)

where Acm and A (ﬂbv/f)T)p are the maximum values of cp and of ( v/ ’I‘)P

o-lr.x
ae ) L]

(A-15)

P

atove the dashed lines in FiguresAl andA2. Varicus criticisms which have
been made with respect to Ehrenfest equation are discussed in (A-28). Also,

various authors (A-18, A-19) criticize the use of Eq. A-15 for the supercritical

region because the temperatures where cp and (FDVV’DT)P reach their g
respective maximum values are not the same. Consequnntly, the value of th %
in Eq. A-15 is somewhat arbitrary. ?

Semenchenko (A-4, A-16, A-29) consiclers the medium in the supercritical ‘
region to consist of two phases which are separated by a region in which the
prcperties change rapidly but continuously. It was already noted that he

takes the locus of points given by Eq. A~7 to represent the extension of
the saturation line in the supercritical region. He notes that at subcritical
pressures the phase transition is accomplished by absorbing an amount of

energy given by Eq.A10 and by doing an amount of work givern :

= - \
1% P (V2 VlI




However, since in the supercritical region there is no discontinuous change

of volume and of entropy, Semenchenko notes that Eq.

modified and replaced by:

AL =

and

A-10 and A~15 must be

(a-17)

(A-18)

For additional discussion of critical phenomena the reader is referred

to tne extensive reviews by Rice (A-1) and by Hammell (A-2).

From the preceding review of the present understanding of thermodynamic

phenomena in the supercritical region we can make the following conclusions:

1) There is no general agreement as to the structure of the medium

and of the mechanism of phase transition in the ciritical and super-

critical region.

2) There is a general agreement that large variations of density and

o  specific heat are present.

3) ost of the authors consider the supercritical region to consist

of two phases -- a liquid-like and a gas-like phase.

4) There is no general consensus as to the location of tl: boundary

or of the transition region between these two phases, although a

large number of investigators consider this demarkation to take

place along the line which is the locus of points where the

specific heat at constant pressure reaches a maximum.

Vo Db Ao M N e e ricta
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5) Thetre is no general consensus as to the nature of phase transition
at supercritical pressurec an of the energy required to bring it
about. Three different methods for evaluating this energy of
transition have been proposed: 1) the graphical method of
Urbakh (A-17) resulting in Eq. A-1l; 2) the second order transition
proposed by Frenkel (A-14, A-26) given by Eq. A-13, and Eq. A-15; and
3) the pseudo transition region proposed by Semenchenko {(a-4, A-16,
A-29) given by K. &#15 and Eq. A~17. 3By examining the proposed methods
and equations, i.e., Eq. A-11, Eq. A-15 and A~17, it can be seep that
these different methods will yielc different values for the transition
energy.

It is evident from the preceding results that the success of any analysis
concerned with the mechanism of flow oscillations and of heat transfer at
supercritical pressures will depend to a great extent upon the ability to
describe more accurately the thermodynamic state of a fluid and the transi-

tion phenomena that take place at supercritical pressures. )
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Appendix B

The Steady State Pressure Drop

In this Appendix we shall derive an expression for the steady state
pressure c¢rop of a fluid whose properties change from a liquid-like at the
entrance to a gas-like at the exit of the heat exchanger. The derivation

and the resulting flow excursion criterion applicable to fluids at critical

and supercritical pressures were first derived by the writer in the Second

Quarterly Progress Report. They are reproduced here for reasons of completeness.

The pressure drop across a heated length L is the sum of the acceleration,
pressure drop, the frictional pressure drop and the pressure drops across
the inlet and exit flow restrictions. Since the pressure drop depends on
the fluid, it becomes necessary to examine first property changes along the

heated duct.

B.1 The System - Three Region Approximation

The system analyzed in this Appendix is shown in the Figure B-1.
A circular duct is uniformly heated at a rate of Q, over a total heated
length L. Two flow restrictions are located at the entrance and at the exit

of the heated section. A fluid at an initial temperature T,, i.e., with the

1
enthalpy il’ flows at a constant mass flow rate‘*r. In passing through the
heated duct the specific volume and the enthalpy of the fluid increase (See
Fig. B-1). The fluid undergoes, therefore, a transformation from a liguid-
like to a gas-like fluid.

Figure B-2 shows the W -i relation for oxygen at a reduced pressure of

P_=1.1. It can be seen from this figure that the increase of specific
144~
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volume from a liquid-like state to a gas-like state occurs gradually over
an enthalpy interval.
In order to simplify the problem, we shall assume that the entire

/ transformation can be approximated by considerdiug three regions. In the

first region of length lf, between stations C) and (D in Figure B-1, the
heavy clusters resemble a liquid. In this region the specific volume of
the fluid is constant having a value of Ve We shall assume that the com-
plete transformation, from heavy to light clusters, takes place within the
transition length 1t’ i.e., between stations (:) and (:) . In this transition
region the specific volume of the fluid changes from a value of Ve to a value
of ng . The enthalpy change associated with this expansion is given by .-
In the third region of length 18, the light clusters
resemble a gas. The specific volume of the fluid in this region can be
approximated by that of gas and, in particular, by that of a perfect gas.
It is apparent from the discussion in Appendix A that the initial and

the final conditions of the transition region, i.e., the conditions at stage ()

and C) respectively, will depend upon the model selected for describing

P R

the pseudo-phase transition in the supercritical region. This follows from
the fact that the temperature or the enthalpy that marks the start of the
pseudo-phase transition will determine the location of station (:), whereas
the location of station (:) will depend on the cnergy required to complete
the trancition from heavy to the light clusters. In this report we shall
denote this energy requirement by ZlLtz. which can be determined by the best

three region approximation indicated in Figure B-1.

——

As discussed in the preceeding sections, we are considering in this

report only the effects of density variation on the flow stability.
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Consequently, we shall assume that both the friction factor and the heat trans-
fer are constant. The first assumption is quite reasonable if the {low remains
turbulent throughout the duct. The iimitation of the second assumption may
become significant if variations of transport properties in the transiticn
region have an important effect on the stability. We note, however, that

both assumptions can be removed permitting an extemsion of the analysis to
consider the effect of variations, other than density, on the initiation of

flow oscilliations.

B.2 The Frictional Pressure Drop

The frictional pressure drop in the system is given by the sum of the
frictional pressure drops across the segments lf, 1t and 1g and the pressure

drops across the inlet and exit flow restrictions, thus

AP(W) = AP (W) + AP, (W) + AP, (W)

B-1

For a constant friction factor f, the pressure drop across a segment

of length 1 is given by

4R = = Ea

B-2
where the lengthwise average specific volume is given by
f\f:T fvahk B-3
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Consequently, in order to evaluate the frictional pressure drops for
the three segments it is necessary to evaluate the specific volume for each
segment. This can be done by relating first the specific volume to enthalpy
and then to express tlie enthalpy in terms of the heated length. This latter
relation can be obtained from energy considerations.

Denoting by 6, the total rate of energy addition to the uystem and by

CL the constant heat flux density, we have for a duct

o
o

foa)

|

= %'f B-4

o

where }E , is the heated periwmeter. It follows from Eq. B-4 that

Q = %% B-5
L
where the total length is given by
)

Furthermore, for a system with constant mass flow rate the change of

enthalpy is given by

Wdi = 48 b

where we have ueglected the kinetic energy of the fluid. It follows then

from Eq. B-7 and B-4 that

Wdi = g% d3 B-8
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and in view of Fq. B-5 we obtain

_L Wi = d% B-9
Q
Substitutirg Eq. B-4, B-3 in Eq. B-2, we obtairn the pressure drop across
a heated segment where the enthalpy of the fluid changes from i to i +Ai,
thus .

- 1 1
T

L
For a three region approximation the relation between v(i) and i

is shown in Figure B-1l. We shall consider now each region sepavately.

a) The Liquid-Like Region

In this region-the specific volume of the fiuid is constant and equal
to v (See Figure B-1). In the segment of length lf, the enthalpy af %he
fluid increases from ii to 12. The frictional pressure drop across 1f be-

comes then

B-11

) .
A?Ilz f_é ((X—) 7 4L, '\)‘(_

b) The Transition Region
In the transition region we shall approximate the i‘elation betwe2n the
specific volume v, and the enthalpy i, by a linear equatiodi. The average

specific volume in this region can be written then as:

: '\rq:;='\ff_+.‘.}a';'{lfh. .if\;f_,.A_\r_t} B-12
2
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Denoting by ALI'I: L'Z'-LZ the chang. in enthalpy, the frictional

pressure drop in the transitional regicn then becomes

P, LWy w AV;,
’ Af21= 5 (A) ) Alyy (W-*‘T”) B-13

c) The Gas-Like Region
In view of the assumption that in this region the flui- has the prop-
erties of a perfect gas we have, for a constant pressure process, the foi-

lowing expression for the specific volume

V = L |_'|
3’ ,U-ﬁ'l‘ +'Pc.f~ (L 7’) B-14
Inserting this expression in Eq. B-10 we obtain
v
_flywy W L R gl
A?-L's - 2D (“;T] E_ALn’ ('Vi,zu_ ~t+ 5 'P_Cp 4 57.') B-15

The change .f enthalpy&i32 , can be expressed also in terms of the total

heat input thus from an energy balance

| Q : ]
AL::.'=—M7: —A"L'Z“A 2. B-16

Inserting this expression in Eq. B-15, we obtain for the frictional

pressure drop in the gas-like region the following expression

Pty = (U [E ity -aia) [ £ R (8 sz 40)]

B-17




B.3 The Inlet and Outlet Pressure Drops

Denoting by ki a numerical coefficient that takes into account the
geomet -y of the restriction ana of other losses like vena contracta etc.,

ve have the inlet pressure drop

AP, = kv WY

B-18

Similarly, we define by ke a numericsl coefficient that accounts
for the geometry and the losses at the exit. The exit pressure can be then

expressed as:

A%y, - he Uiy W ‘

B-19
which, in view of Eq. B-14 and B-16, can be also writtc..
? 4
S~ 2 Q ' ' f
- Ty o [ Ao
hy s b R (it
P i B-20
B.4 The Acceleration Pressure Drop
The acceleration pressure drop is given by
dp = puoln
B-21
as \A}
W o_em=u
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then

db = W d~
s A

B-23

The total acceleration pressure droupe .. ;uired to accelerate a fluid of

specific volume v, at the inlet up to the exit where it attains a specific

f

volume vg3 is given therefore by

2
A%, = \(‘A%) (Vs =)

B-24
Inserting Eq. B-14 in Eq. 24 we obtain
A_'Pa — _W..)l Ay + & Aiz_,-,j -—'\'4‘ B-25
A LR ‘
or in view of Eq. B-16 we have
W R (Q _,i -
2 (\A (o ?‘-? w »1 A b t B-26

B.5 The Total Pressure Drop

The total pressure drop is obtained by summing Eq. B-26, B-20, B-18,

B-17 and B-1ll, thus after some rearrangement

3 [
A?‘+A‘P°4 =Q% —b‘/\r1+ CQW B-27
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where the coefficients a, b and ¢ are given by

CL ' v Lo
O= ID—A“%’U-(-ML‘ + <'\J‘+¢ A..)f‘*} ALy -
( R X ' ! ! -
+ [% Er (A-LL\""ALL'I)-\Ygai"J(A ‘“*A‘Lill"} 528

bt §2D[2 (Mu*ﬂfﬂ“vi*WJJf

LDA™ FL ?(.P

, (AH,"‘AH'L)—‘VQI' - e 2D Ve o+ B-29
[4
L

2DAT : -
+ ¢ o [—‘.I %{_%/AL,_!..AL.;Q_-\);.L] }-

B-30
Q_.ﬂ-_[‘_b2+«.2.w l])_;g_
WA~ L FL '2..?%

The form of Eq. B-27 is relevant to the present problem because it shows
that, for some operating conditions, the pressure drop may decrease with
increasing mass flow. This consequence of the negative term on the right-

hand side of Eq. B-27,

B.6 The Two Region Approximation

Following the derivation of the pressure drop given in the preceding
section it was ohserved by Dr. R. Fleming, from the Research and Development

Center at G.E., that instead of considering a three region approximation as
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shown in TI'ig. B-1, th~ problem can be further simplified by considering a

two-region approximation indicated in the sketch below

0
by |

¢

«
[ ]

Two-Region Approximation

In the two-region approximation the transition region shown in Fig:. B-1
and B-2 is neglected, i.e., 1t = 0, i2 = if’ -ng, = Ve It is assumed,
therefore, that the change from a liquid-like to a gas-like fluid occurs in-
stantaneously in a plane perpendicular to the flow when the enthalpy reaches
a value of 12 indicated on the sketch above.

We can further amplify the preceding observation. It can be seen

from Fig. B-2 that the enthalpy which corresponds to the transition point

can be approximated by the enthalpy at the transposed critical temperature
T

e’ i.e., by the enthalpy that corresponds to the maximum value of the
specific heat at constant pressure cp. Consequently, with a two-region
approximation one can consider that the liquid-like state persists until

the temperature of the bulk fluid reaches a value that is equal to the

transposed critical (or pseudo-critical’) temperature.
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the fluid behaves as a gas. Therefore, the cransposed critical temperature
th, can be regarded as the boundary between the liquid-like and the gas-like
states. It was discussed already in Appendix A, that both Sirota (A-19)
and Kaganer (A-18) have shown that this temperature is the extension of the
saturation line in the supercritical region. Figure A-1 in Appendix A
shows that the transposed critical temperature increases with increasing
values of reduced pressure. It can be concluded therefore that the value
of enthalpy corresponding to this temperature and to the transition point
shown in Fig. B-2 will also increase with increasing reduced pressures.

For a two-region approximation the form of Eq. B-27 remains unchanged,
however, the coefficients a, b and c¢ given by Eq. B-28 and B-29 and B-30
reduce to:

%
LR L\Lu‘]

B-21

L \ N
b= glb LY _;E_“M -'U'(,(l-«- p 1—“—")? B-32
d

B-33

}

—
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which we obtain by setting Ai =0, Avfg =0,V 4 =v_ ir Eq. B-28,

22 g9 £

B-29 and B-30.

As noted by Dr. Fleming the use of the two-region approximation simplifies

consideratly the form c{ the coefficients a, b end ¢. Th

1]
it
=y
=
D
1]
[a]
[}
[#]
=
o]
=

approximation retains however a closer similarity with phenomena that take

place at sutcvitical pressure. The transition region shown in Fig. B-1 can

be regarded as corresponding to the boiling region at suberitical pressures.

The liquid and the gas region in Fig. B-1 would then correspond tc the pre-

heating ard to the superheating region in a once-through boiling system

where the liquid at the entrance is subcooled and the steam at the exit is .
superheated. We have noted already in Appendix A that the enthalpy change

\
AL‘L"L may be considered as heing equivzlent to the heat of vaporization

hfg'

The selecticn of either the two or three region approximation should
be determined by the desired simplicity and accuracy. Thc impociant result
is however the fact that, because of the negative term on the right-hand side
of Eq. 27, there exist a possibility of a decrease in pressure drop with

increasing flow in the supercritical thermodynamic region. It was shown i

in the body of the report that such a pressure drop vs flow relation can

lead either to excursive flow or to oscillatory flow.
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Appendix C

The upper and lower bounds of the integrals

The integrals given by Eq. IV-94 , IV-101 and IV-111 can be all

expressed in the form of _. _
us/u,

where K is a coefficient and m an exponent.

integral given by Eq. IV-11l1 is

For example, the

L
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It can be expressed by
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However, in view of Eq. IV-34 and IV-28 we have

all-K) = U -
and
;!§($) = M+ ('ﬁ" ]r)
O{U‘%l"al = S d%
whence we can express Eq. C-3 as

U3 fwi
ST, 2

o D> b % -\ Ay

B o & e “dwu [i_]“ 04(

7

—

UQI}]

By comparing Eq. C-7 with Eq. C-1 it can be seen that they are

of the same form.

In view of Eq. C-2, the integration of Eq. C-7 yields:
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which, after some rearrangement, can be expressed in the form of

Eq. IV-1i1, thus
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In order to obtain the upper and lower bound ot Eq. IV-94,

IV-101, IV-111 we note that Eq. C-1 can be written as

T- X E c-10

where F is the mean value of F given by
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whence by the mean value thereom
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which together with Eq. C-10 yields the upper and lower bounds given in

Eq. IV-95, IV-105 and IV-116, thus

A . T c-13
ﬂ‘) < T «XK

U

For example, from Eq. C-7 and Eq. C-12 we cbtain
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it can be seen that Eq. C-14 can be put in the form of Eq. IV-116.
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